A vanadium-containing bromoperoxidase (VBrPO) from the alga Corallina officinalis has been shown to catalyze the stereoselective oxidation of some aromatic bicyclic sulfides to the corresponding (S)-sulfoxides in high (up to 91%) ee. Hydrogen peroxide was found to have a large effect on the catalyzed reaction, most likely due to an inhibition of VBrPO. High optical and chemical yields were found to be favored by a continuous slow addition of hydrogen peroxide to keep a low excess. The reaction gives no overoxidation to sulfone, and its stereochemistry is the opposite as compared to that previously found with the heme-containing chloroperoxidase (CPO) from Caldariomyces fumago.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo9712456 | DOI Listing |
J Inorg Biochem
September 2018
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:
Vanadium-dependent haloperoxidases are a class of enzymes that catalyze oxidation reactions with halides to form halogenated organic products and water. These enzymes include chloroperoxidase and bromoperoxidase, which have very different protein sequences and sizes, but regardless the coordination environment of the active sites is surprisingly constant. In this manuscript, the comparison of the coordination chemistry of V-containing-haloperoxidases of the trigonal bipyramidal geometry was done by data mining.
View Article and Find Full Text PDFIn this article, the authors present the fabrication of an enzyme-entrapped alginate hollow fiber using a microfluidic device. Further use of enzyme-entrapped alginate hollow fibers as a biocatalytic microchemical reactor for chemical synthesis is also deliberated in this article. To ensure that there is no enzyme leaching from the fiber, fiber surfaces were coated with chitosan.
View Article and Find Full Text PDFJ Phys Chem B
April 2009
Max-Planck-Institut fur Kohlenforschung, Kaiser-Wilhelm-Platz, Mulheim an der Ruhr, Germany.
QM/MM models of the peroxo forms of vanadium-containing haloperoxidases (VHPOs) are critically assessed in terms of active site geometries, hydrogen bonds within the active site, isotropic and anisotropic (51)V NMR chemical shifts, and TD-DFT excitation energies. The geometric stability within the active site of the protein is comparable to the respective native forms, as indicated by low standard deviations in bond lengths across a number of local minima sampled along MD trajectories. There is a significant calculated upfield shift in delta((51)V) upon formation of the peroxo from the respective native forms for both the vanadium-containing chloroperoxidase (VCPO) and vanadium-containing bromoperoxidase (VBPO) models, which is in qualitative agreement with (51)V NMR experiments of VBPO in solution.
View Article and Find Full Text PDFJ Inorg Biochem
April 2009
School of Biosciences, University of Exeter, Exeter, UK.
The X-ray crystal structure of the vanadium bromoperoxidase from the red algae Corallina pilulifera has been solved in the presence of the known substrates, phenol red and phloroglucinol. A putative substrate binding site has been observed in the active site channel of the enzyme. In addition bromide has been soaked into the crystals and it has been shown to bind unambiguously within the enzyme active site by using the technique of single anomalous dispersion.
View Article and Find Full Text PDFJ Org Chem
November 1997
Department of Chemistry, University of Göteborg, S-41296 Göteborg, Sweden, and Department of Biological Sciences, University of Exeter, Exeter, EX4 4QD, U.K.
A vanadium-containing bromoperoxidase (VBrPO) from the alga Corallina officinalis has been shown to catalyze the stereoselective oxidation of some aromatic bicyclic sulfides to the corresponding (S)-sulfoxides in high (up to 91%) ee. Hydrogen peroxide was found to have a large effect on the catalyzed reaction, most likely due to an inhibition of VBrPO. High optical and chemical yields were found to be favored by a continuous slow addition of hydrogen peroxide to keep a low excess.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!