New Methods of Resolution and Enrichment of Enantiomeric Excesses of 1,1'-Bi-2-naphthol.

J Org Chem

School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, India, and RSIC, Indian Institute of Technology, Madras 600 036, India.

Published: June 1997

Partial resolution of racemic 1,1'-bi-2-naphthol (1) was readily achieved to obtain enriched (scalemic) 1 using (S)-proline (2). The structure of the complex 3 formed between 1 (2 equiv) and (S)-proline (1 equiv) was characterized by an X-ray diffraction method. Enantiomeric excesses of the incompletely resolved 1 were enriched to obtain essentially pure (R)- and (S)-1 following a simple procedure using B(OH)(3) and TMEDA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo961937eDOI Listing

Publication Analysis

Top Keywords

enantiomeric excesses
8
methods resolution
4
resolution enrichment
4
enrichment enantiomeric
4
excesses 11'-bi-2-naphthol
4
11'-bi-2-naphthol partial
4
partial resolution
4
resolution racemic
4
racemic 11'-bi-2-naphthol
4
11'-bi-2-naphthol achieved
4

Similar Publications

Sc-Catalyzed Asymmetric [2 + 2] Annulation of 2-Alkynylnaphthols with Dienes to Access Cyclobutene Frameworks.

Org Lett

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.

Herein, we introduce a scandium-catalyzed synthetic strategy that provides access to a diverse and functionalized array of cyclobutene frameworks adorned with a quaternary carbon center. This approach broadens the synthetic repertoire of 2-alkynylnaphthols with alkenes, offering a versatile platform for the construction of complex molecular architectures. The asymmetric catalytic [2 + 2] cycloaddition reaction demonstrates a wide substrate scope and an impressive functional group tolerance, yielding products with high efficiency, up to 97% yield, and excellent enantiomeric excess of up to 97%.

View Article and Find Full Text PDF

Structure-guided mining of stereoselective reductive aminases for biocatalytic stereodivergent synthesis of chiral piperidinamine and derivatives.

J Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Chiral azacyclic amine derivatives occupy a vital role of nitrogen-containing compounds, due to serve as foundational motifs in numerous pharmaceuticals and bioactive substances. Novel complementary enantioselective reductive aminases IRED9 and IRED11 were unveiled through comprehensive gene mining from Streptomyces viridochromogenes and Micromonospora echinaurantiaca, respectively, which both demonstrated enantiomeric excess (ee) values and conversion ratio up to 99% towards N-Boc-3-pyridinone (NBPO) and cyclopropylamine. IRED9 exhibited the highest activity at pH 8.

View Article and Find Full Text PDF

Engineering silica nanocoated whole-cell asymmetric biocatalyst for efficient preparation of a key chiral intermediate of (S)-Rivastigmine.

J Biotechnol

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

In our previous study, the whole cells containing an aldo-keto reductase (yhdN) and glucose dehydrogenase (GDH) were constructed and applied in a stereoselective carbonyl reduction reaction to prepare (S)-NEMCA-HEPE, being a key chiral intermediate of (S)-Rivastigmine which is widely prescribed for the treatment of Alzheimer's disease. Although the conversion and enantiomeric excess (e.e.

View Article and Find Full Text PDF

Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.

View Article and Find Full Text PDF

The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!