Download full-text PDF

Source
http://dx.doi.org/10.1021/jo961824vDOI Listing

Publication Analysis

Top Keywords

lewis acid-mediated
4
acid-mediated addition
4
addition 12-naphthoquinones
4
12-naphthoquinones 11-diarylethylenes
4
11-diarylethylenes photocyclization
4
photocyclization adducts
4
adducts facile
4
facile synthesis
4
synthesis 312-disubstituted
4
312-disubstituted chrysene-56-diones
4

Similar Publications

Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles.

J Org Chem

January 2025

School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.

The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination.

View Article and Find Full Text PDF

Herein, we report a Lewis acid-mediated ring expansion of donor-acceptor cyclopropanes (DACs) to substituted azetidines via nucleophilic nitrogen group transfer from readily accessible iminoiodinane. This protocol operates under mild, transition-metal-free conditions, and showcases excellent chemoselectivity, along with broad functional group tolerance. We report for the first time that challenging alkyl donor-acceptor cyclopropanes can undergo ring expansion leading to aliphatic azetidines without relying on external oxidants or precious transition-metal catalysts.

View Article and Find Full Text PDF

BF-Mediated C2-Amidation of Quinoline Oxides Employing Trifluorodiazoethane and Acetonitrile: Access to 2-(Trifluoroethyl)amidoquinolines.

Org Lett

January 2025

Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.

A Lewis acid-mediated C2-trifluoroethylamidation of quinolines, employing quinoline oxides, trifluorodiazoethane, and acetonitrile to forge a new class of (quinolin2-yl)-(trifluoroethyl)acetamide is presented in this Letter. The reaction proceeds through a carbene generation/nitrile ylide formation/(3 + 2) cycloaddition/rearrangement cascade to furnish quinoline-2-(trifluoroethyl)acetamide derivatives in high yields.

View Article and Find Full Text PDF

The catalyst-electrolyte interface plays a crucial role in proton exchange membrane water electrolysis (PEMWE). However, optimizing the interfacial hydrogen bonding to enhance both catalytic activity and stability remains a significant challenge. Here, a novel catalyst design strategy is proposed based on the hard-soft acid-base principle, employing hard Lewis acids (LAs = ZrO, TiO, HfO) to mediate the reconfiguration of interfacial hydrogen bonding, thereby enhancing the acidic oxygen evolution reaction (OER) performance of RuO.

View Article and Find Full Text PDF
Article Synopsis
  • Altering the reactivity of molecules could resolve current limitations, especially for Donor-Acceptor Cyclopropanes (DACs) which have relied on Lewis acids for activation.
  • Unpolarized alkenes present challenges due to a polarity mismatch with the Lewis acid-mediated zwitterionic intermediate, hindering their coupling.
  • Using photoredox catalysis to leverage the distonic radical cation approach successfully navigates this mismatch, allowing for the formation of highly substituted cyclopentanes and facilitating new pathways to create bicyclo[3.1.1]heptanes through a unique [3σ+2σ] cycloaddition process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!