Monoperoxyphthalate (MPP) was solubilized in three different aqueous cationic surfactant aggregates composed of (i) a micellar cetyltrimethylammonium chloride (CTACl) solution; (ii) an oil-in-water (O/W) microemulsion (ME) stabilized by CTACl, and a cosurfactant, tert-butyl alcohol, and (iii) a vesicular medium composed of dispersions of dihexadecyldimethylammonium chloride (DHDAC). At pH approximately 8.5 and 25 degrees C, each of these formulations was used to cleave p-nitrophenyl diphenyl phosphate (PNPDPP). The aggregate and the maximum pseudo-first-order rate constants ([MPP] = 4 x 10(-)(5) M, and [PNPDPP] = 1 x 10(-)(5) M) for the PNPDPP cleavages are the following: buffer alone, 0.00034 s(-)(1); micelle: 0.024 s(-)(1); ME: 0.0048 s(-)(1); and vesicle: 0.025 s(-)(1). Importantly all the catalytic formulations showed "turnover" behavior in the presence of excess substrates. By the combined use of (1)H- and (31)P-NMR spectrometry and synthesis, it was possible to provide evidence for the formation of acylated or phosphorylated monoperoxypthalates in the catalytic hydrolyses in cationic surfactant aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo961570dDOI Listing

Publication Analysis

Top Keywords

cationic surfactant
12
surfactant aggregates
12
evidence formation
8
formation acylated
8
acylated phosphorylated
8
phosphorylated monoperoxyphthalates
4
monoperoxyphthalates catalytic
4
catalytic esterolytic
4
esterolytic reactions
4
reactions cationic
4

Similar Publications

Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences.

Int J Biol Macromol

January 2025

Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen.

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

A β-cyclodextrin-based supramolecular modular system creating micellar carriers for codelivery of doxorubicin and siRNA for potential combined chemotherapy and immunotherapy.

Carbohydr Polym

March 2025

Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:

The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.

View Article and Find Full Text PDF

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!