A fluorescent Hoechst 33258 derivative has been prepared in which a hexa(ethylene glycol) linker is attached to the terminal phenol residue. Conjugation of this derivative to DNA sequences is accomplished by a reversed coupling protocol, one in which the 5'-terminal nucleoside residue of a fully protected DNA sequence is converted to a terminal phosphoramidite. In the presence of the Hoechst derivative and tetrazole the final coupling reaction is achieved to generate the conjugated nucleic acid. After deprotection and cleavage of the conjugate from the support, HPLC analysis indicates that the conjugation reaction proceeds with yields as high as 75%. The presence of the conjugated Hoechst derivative increases the stability of DNA duplexes typically by 10-16 degrees C. A variety of sequence variants indicate that the tether length is sufficient to reach beyond the terminus of the DNA duplex and bind to internal A-T rich target sequences as far away as four base pairs from the site of attachment. A four base pair binding site appears to be necessary for effective helix stabilization by the conjugate, but in some cases can include a G-C base pair, which is consistent with a previous X-ray diffraction study regarding the binding of Hoechst 33258 to duplex DNA. When A-T base pairs alternate with G-C base pairs, a small but discernible increase is T(m) is observed (3.6 degrees C), indicating that binding to this sequence still occurs, but not in the same manner as to A-T rich sequences. Upon formation of the conjugated duplex, an enhanced quantum yield for the fluorescence emission spectrum of the tethered Hoechst derivative is observed. When an A-T rich binding site is present, the enhanced quantum yield increases by at least 16- and in some cases to nearly 30-fold relative to the value obtained for the single-stranded DNA-Hoechst conjugate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9618536DOI Listing

Publication Analysis

Top Keywords

hoechst 33258
12
hoechst derivative
12
a-t rich
12
base pairs
12
hexaethylene glycol
8
glycol linker
8
base pair
8
binding site
8
g-c base
8
enhanced quantum
8

Similar Publications

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

In this work, we have explored the metal ion sensing properties of two bisbenzimidazole-based fluorescent probes, that differ in their conformational flexibility, in an aqueous medium. The compound with a flexible methyl spacer (1) experienced blue shifts in its absorption and emission maxima (along with a turn-off response) upon the addition of Hg ions. On the contrary, the compound with a relatively rigid structure (2) showed red shifts in both its absorption and emission maxima (along with a turn-off response) when treated with Hg under similar conditions.

View Article and Find Full Text PDF

Flexible bis-benzimidazole-based V-shaped amphiphilic probes (1 and 2) that form a fluorescent nanoscopic assembly in aqueous media have been designed. The ion-binding properties of compound 1 are investigated in both polar protic (water) and aprotic (acetonitrile) solvents. In acetonitrile, the compound shows a distinct chromogenic response towards Hg (LOD: 8.

View Article and Find Full Text PDF

Comprehensive Investigations About the Binding Interactions of Sudan Dyes with DNA by Spectroscopy and Docking Methods.

J Fluoresc

January 2025

School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, People's Republic of China.

Sudan dyes are recognized as carcinogens, which are strictly determined whether there are them in food for food safety. Hence, in order to understand the mechanism at the molecular level, this work investigated the binding interactions of Sudan I-IV with calfthy mus DNA. The synchronous fluorescence and UV-vis spectral results suggested the complex formation between Sudan I-IV and ct-DNA.

View Article and Find Full Text PDF

Using a computer modeling approach, we proposed a structure for a potential GC-specific DNA ligand, which could form a complex with DNA in the minor groove similar to that formed by Hoechst 33258 at DNA AT-enriched sites. According to this model, , a bisbenzoxazole ligand, was synthesized. The results of spectrophotometric methods supported the complex formation of the compound under study with DNA differing in the nucleotide composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!