Self-Assembly of the First Copper(II) Infinite 2D Network with Large Cavities Formed between the Two Adjacent Layers.

Inorg Chem

State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, P. R. China, and Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan.

Published: December 1999

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9907563DOI Listing

Publication Analysis

Top Keywords

self-assembly copperii
4
copperii infinite
4
infinite network
4
network large
4
large cavities
4
cavities formed
4
formed adjacent
4
adjacent layers
4
self-assembly
1
infinite
1

Similar Publications

Article Synopsis
  • Control of individual atomic spins is essential for advancements in spintronics, quantum sensing, and quantum information processing, with scanning tunneling microscopy (STM) being a effective tool for manipulation.
  • The research presents a new method for self-assembling magnetic organometallic complexes using iron atoms and specific molecules (Cu(dbm) and FePc) on a silver substrate, effectively forming complexes that mimic metallocenes.
  • Magnetic properties of these complexes show a notable Kondo effect, which is explained through density functional theory calculations indicating that the interaction between Fe 3d-orbitals and benzene π-orbitals enhances Kondo screening, offering insights for designing hybrid organometallic systems.
View Article and Find Full Text PDF

Self-assembly synthesis of mixed-ligand (silsesquioxane/acetate) complex allows to isolate record high nuclear copper(II) Cu-cage (1). In the presence of two additional sodium ions, a unique molecular architecture, with triple combination of ligands (cyclic and acyclic silsesquioxanes as well as acetates), has been formed. The structure was established by single-crystal X-ray diffraction based on the use of synchrotron radiation.

View Article and Find Full Text PDF
Article Synopsis
  • The reaction of four 1,2-dibromoxylenes with two tetra-3-pyridylporphyrins resulted in the creation of a metal-free organic nanocage (oNC) that was produced in a highly efficient 91.5% yield.
  • The synthesized oNC was subsequently metalated with cobalt(II), copper(II), and nickel(II) ions to produce dinuclear complexes, which were characterized using various analytical techniques such as mass spectrometry and X-ray diffraction.
  • The cofacial cobalt porphyrins showed significant potential as catalysts for the Oxygen Reduction Reaction, demonstrating high selectivity for producing hydroxyl during electrochemical processes, while the robust architecture of the oNC allows for potential applications with
View Article and Find Full Text PDF

The synthesis of a high nuclear (CuNa) complex 1 the self-assembly of copper(II) phenylsilsesquioxane induced by complexation with bis(triphenylphosphine)iminium chloride (PPNCl) was successfully achieved. This complex, which includes two bis(triphenylphosphine)iminium PPN cations, represents the first example of a metallasilsesquioxane/phosphazene compound. The CuNa-silsesquioxane cage demonstrates a nontrivial combination of two pairs of Si-cyclic/Si-acyclic silsesquioxane ligands and a fusion of two SiCuNa fragments, combined the central ninth copper ion.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) is commonly used as a chemotherapeutic drug for advanced HCC. However, the effectiveness of 5-FU is limited by the emergence of resistance and poor targeting efficiency. Combining 5-FU with natural compounds has shown promise in HCC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!