A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Binding of the Delta- and Lambda-Enantiomers of [Ru(dmphen)(2)dpq](2+) to the Hexanucleotide d(GTCGAC)(2). | LitMetric

Binding of the Delta- and Lambda-Enantiomers of [Ru(dmphen)(2)dpq](2+) to the Hexanucleotide d(GTCGAC)(2).

Inorg Chem

School of Chemistry, University College, University of New South Wales, Australian Defence Force Academy, Canberra 2600, Australia, and Department of Chemistry, University of Western Sydney, Macarthur, P.O. Box 555, Campbelltown, New South Wales, Australia.

Published: November 1999

1H NMR spectroscopy and viscosity measurements have been used to study the oligonucleotide binding of the Delta- and Lambda-enantiomers of the metal complex [Ru(dmphen)(2)dpq](2+) (dmphen = 2,9-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-f:2',3'-h]quinoxaline). The addition of either enantiomer to d(GTCGAC)(2) induced large upfield shifts and significant broadening for the hexanucleotide imino and metal complex dpq resonances. These data coupled with the observed increase in the melting transition midpoint of the hexanucleotide duplex upon addition of either enantiomer suggests that both Delta- and Lambda-[Ru(dmphen)(2)dpq](2+) bind by intercalation. A significant number of metal complex to hexanucleotide NOE contacts were observed in NOESY spectra of d(GTCGAC)(2) with added Delta- or Lambda-[Ru(dmphen)(2)dpq](2+). The observed intermolecular NOEs were consistent with both enantiomers intercalating between the G(4)A(5) bases of one strand and the T(2)C(3) bases of the complementary strand. Intermolecular NOEs from the dmphen protons were only observed to protons located in the hexanucleotide minor groove. Alternatively, NOE contacts from the dpq protons were observed to both major and minor groove protons. The NOE data suggest that the dpq ligand of the Delta-enantiomer intercalates deeply into the hexanucleotide base stack while the Lambda-enantiomer can only partially intercalate. Viscosity measurements were consistent with the proposed intercalation binding models. The addition of the Delta-enantiomer increased the relative viscosity of the DNA solution, while a decrease in the relative viscosity of the DNA was observed upon addition of the Lambda-metal complex. These results confirm our proposal that octahedral metallointercalators can intercalate from the minor groove. In addition, the results demonstrate that the left-handed enantiomer of [Ru(dmphen)(2)dpq](2+) prefers to intercalate from the narrow minor groove despite only being able to partially insert a polycyclic aromatic ligand into the DNA base stack.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic990092xDOI Listing

Publication Analysis

Top Keywords

minor groove
16
metal complex
12
binding delta-
8
delta- lambda-enantiomers
8
viscosity measurements
8
addition enantiomer
8
delta- lambda-[rudmphen2dpq]2+
8
noe contacts
8
intermolecular noes
8
protons observed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!