The reactions of the water-soluble complexes [NiCR](2+) (where CR = 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaene) and [NiKGH-CONH(2)](+) (where KGH-CONH(2) = lysylglycylhistidinecarboxamide) with sulfite/O(2) and peroxymonosulfate have been investigated using spectrophotometric and rapid-scan techniques. In most cases, the spectral changes suggest the formation of an intermediate Ni(III) species, followed by decomposition reactions which involve a back-reaction to Ni(II). Only in the case of the [NiCR](2+)-S(IV)-O(2) system is the formed Ni(III) species stable in solution. When sulfite and oxygen are used to oxidize Ni(II) to Ni(III), the reaction is oxygen dependent and an induction period could be observed, whereas the use of the strong oxidizing agent peroxymonosulfate resulted in no induction period and no oxygen dependence. In addition, the oxidation of Ni(II) to Ni(III) was faster if peroxymonosulfate was used instead of sulfite/O(2). The [NiKGH-CONH(2)](+) complex reacts much faster with sulfite/O(2) and peroxymonosulfate than the [NiCR](2+) does. Rate constants for the oxidation process and possible reaction mechanisms, based on available literature data, that can account for the observed kinetic observations in a qualitative way are presented, and the results are correlated with previously obtained data on DNA modification using these systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic981342x | DOI Listing |
Water Res
July 2024
State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates.
View Article and Find Full Text PDFEnviron Pollut
April 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China. Electronic address:
Photo-catalyzing sulfite (S(IV)) for the generation of sulfate radical (SO) has emerged as a novel advanced oxidation process (AOP) recently. However, both the potential of soil minerals as effective photocatalysts and the process of water acidification due to S(IV) oxidation have been overlooked. Herein, maghemite (γ-FeO), a typical soil iron oxide with excellent photocatalytic reactivity like hematite and magnetic-collectible property like magnetite, was successfully used to activate S(IV) for iohexol degradation under visible light irradiation.
View Article and Find Full Text PDFWater Res
January 2024
Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China. Electronic address:
Singlet oxygen (O)-mediated advanced oxidations have received considerable attention due to their strong capacity to resist the water matrix and high selectivity for organic pollutants. In this study, the activation of chlorine dioxide with sulfite (sulfite/ClO process) to effectively produce O was proposed to degrade fluconazole (FLC) and simultaneously control the formation of disinfection byproducts (DBPs). The results revealed that FLC could be rapidly degraded by 78.
View Article and Find Full Text PDFChemosphere
July 2021
School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, PR China; Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430200, PR China. Electronic address:
Developing new strategies to design more practicable and efficient g-CN based photocatalysts is important to solve the environmental issues. Thiosulfate (STS) is a common residual product found in wastewater and removal of STS remains a matter of great environmental concern. In this work, however, STS is activated by g-CN under visible light irradiation, resulting in a fast degradation of Rhodamine B (RhB) and other pollutants.
View Article and Find Full Text PDFJ Hazard Mater
May 2020
School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430072, China. Electronic address:
Developing efficient catalysts for persulfate (PS) activation is important for the potential application of sulfate-radical-based advanced oxidation process. Herein, we demonstrate single iron atoms confined in MoS nanosheets with dual catalytic sites and synergistic catalysis as highly reactive and stable catalysts for efficient catalytic oxidation of recalcitrant organic pollutants via activation of PS. The dual reaction sites and the interaction between Fe and Mo greatly enhance the catalytic performance for PS activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!