This paper presents geometries of copper(II) chelates with L-alanine, L-leucine, and L-N,N-dimethylvaline optimized by the hybrid density functional method B3LYP. According to the molecular quantum mechanics results, a square-planar copper(II) coordination geometry is electronically favored in vacuo. Deviations from the planar configuration observed in the crystal state should be attributed to sterical intramolecular and/or intermolecular effects. This paper proposes a new molecular mechanics model for tetracoordinated copper(II) amino acidates to investigate these effects in detail. The empirical parameter set for the selected potential energy functions was optimized both with respect to the X-ray crystal structures (internal coordinates and unit cell constants) and with respect to the quantum mechanically derived valence angles around copper. To test this newly developed force field (FF), the equilibrium geometries of 10 molecules are predicted in vacuo and in approximate crystalline surrounding. The results were compared with their ab initio and experimental crystal structures, respectively. The unit cell volumes were reproduced in a range from -7.0% to 2.1%. The total root-mean-square deviations between the experimental and FF in crystal internal coordinates were 0.017 Å in the bond lengths, 2.2 degrees in the valence angles, and 3.6 degrees in the torsion angles. The force field is capable of reproducing the changes in the chelate rings' torsion angles caused by the crystal packing forces and successfully explains the nonplanarity of Cu(II) amino acid complexes in their crystal structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic980471a | DOI Listing |
ChemSusChem
December 2024
TCG-CREST, Research Institute for Sustainable Energy (RISE), INDIA.
Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field ( = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase.
View Article and Find Full Text PDFChemSusChem
December 2024
North China Electric Power University, College of Environmental Science and Engineering, CHINA.
Although Pb-based metal halide perovskites (MHPs) have excellent photoelectric characteristics, their toxicity remains a limiting factor for their widespread application. In the paper, a series of CsCuClxBr3-x (x = 1, 2, 3) MHP microcrystals were developed and their hydrogen evolution performance in ethanol and HX (X = Cl, Br) was also studied. Among them, CsCuCl3 microcrystals exhibit high hydrogen evolution performance in both HX and ethanol, attributed to their longest average lifetime and suitable band structure.
View Article and Find Full Text PDFChemistry
December 2024
Ulsan National Institute of Science and Technology, Chemistry, UNIST-gil 50, Bldg.108, Rm901-5, 44919, Ulsan, KOREA, REPUBLIC OF.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.
We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7 GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!