A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enantioselective Sulfoxidation Catalyzed by Vanadium Haloperoxidases. | LitMetric

Enantioselective Sulfoxidation Catalyzed by Vanadium Haloperoxidases.

Inorg Chem

E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands, Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680, Japan, DSM Research, Bio-Organic Chemistry, P.O. Box 18, 6160 MD Geleen, The Netherlands.

Published: December 1998

Vanadium haloperoxidases catalyze the oxidation of halides by hydrogen peroxide to produce hypohalous acid. We demonstrate that these enzymes also slowly mediate the enantioselective oxidation of organic sulfides (methyl phenyl sulfide, methyl p-tolyl sulfide, and 1-methoxy-4 (methylthio)benzene) to the corresponding sulfoxides (turnover frequency 1 min(-)(1)). The vanadium bromoperoxidase from the brown seaweed Ascophyllum nodosum converts methyl phenyl sulfide to the (R)-enantiomer of the sulfoxide (55% yield and 85% enantiomeric excess (ee)). At low peroxide concentrations a selectivity of 91% can be attained. The enzyme catalyzes the selective sulfoxidation reaction over a broad pH range with an optimum around pH 5-6 and remains completely functional during the reaction. When the vanadium bromoperoxidase from the red seaweed Corallina pilulifera is used the (S)-enantiomer (18% yield and 55% ee) is formed. In contrast, the vanadium chloroperoxidase from the fungus Curvularia inaequalis catalyzes the production of a racemic mixture (54% yield), which seems to be an intrinsic characteristic of this enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9806075DOI Listing

Publication Analysis

Top Keywords

vanadium haloperoxidases
8
methyl phenyl
8
phenyl sulfide
8
vanadium bromoperoxidase
8
vanadium
5
enantioselective sulfoxidation
4
sulfoxidation catalyzed
4
catalyzed vanadium
4
haloperoxidases vanadium
4
haloperoxidases catalyze
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!