The mechanism for manganese-catalyzed aqueous autoxidation of hydrogen sulfite at pH 2.4 has been revised on the basis of previous comprehensive kinetic studies and thermodynamic data for iron-manganese redox processes and manganese(II) and -(III) protolysis equilibria. The catalytically active manganese species is concluded to be an oxo- (or hydroxo-) bridged mixed-valence complex of composition (OH)Mn(III)OMn(II)(aq) with a formation constant beta' of (3 +/- 1) x 10(4) M(-)(1) from kinetics or ca. 7 x 10(4) M(-)(1) from thermodynamics. It is formed via rapid reaction between Mn(H(2)O)(6)(2+) and hydrolyzed manganese(III) aqua hydroxo complexes, and it initiates the chain reaction via formation of a precursor complex with HSO(3)(-), within which fast bridged electron transfer from S(IV) to Mn(III) takes place, resulting in formation of chain propagating sulfite radicals, SO(3)(*)(-). The very high acidity of Mn(3+)(aq), indicating a strong bond Mn(III)-OH(2) in hydrolyzed manganese(III), makes an attack by HSO(3)(-) on substitution labile Mn(II) in the bridged complex more favorable than one directly on manganese(III). The synergistic effect observed in systems containing iron as well as manganese and the chain initiation by trace concentrations of iron(III) of ca. 5 x 10(-)(8) M can also be rationalized in terms of formation of this bridged mixed-valence dimanganese(II,III) complex. The presence of iron(III) in a Mn(II)/HSO(3)(-) system results in rapid establishment of an iron-manganese redox equilibrium, increasing the concentration of manganese(III) and of the catalytically active bridged complex. The bridged complex oxidizes HSO(3)(-) several orders of magnitude faster than does iron(III) itself. Comparison with some previous studies shows that the different experimental rate laws reported do not necessarily indicate different reaction mechanisms. Instead, they can be rationalized in terms of different rate-determining steps within the same complex chain reaction mechanism, depending on the experimental conditions used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic980225z | DOI Listing |
Sci Total Environ
December 2024
School of Environment and Resource, Xichang University, Xichang 615000, PR China.
Mining activities have led to significant rare earth elements (REEs) contamination and ecotoxicological risks in aquatic systems. However, the concentration, speciation, and primary controlling factors of REEs in aquatic systems in southwest China have remained unclear. This study investigated the water geochemistry, concentration, speciation, fractionation patterns, and anomalies of REEs in the surface water, shallow groundwater, and deep groundwater within a mining-impacted catchment area in southwest China across different seasons.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China. Electronic address:
This study focused on two Mn-oxide-containing adsorbents for As(Ⅲ) removal, namely granular iron-manganese composite oxide (GFMO) and granular iron-manganese-copper composite oxide (GFMCO). The comparative experiments results demonstrated that GFMCO exhibited superior performance in As(Ⅲ) removal and a more obvious Mn(II) release compared to GFMO. Furthermore, this study explored the approaches for the control of manganese release during As(Ⅲ) removal, identifying sodium hypochlorite (NaClO) oxidation followed by manganese sand filtration as the most effective method for capturing released Mn(Ⅱ) in water.
View Article and Find Full Text PDFArch Toxicol
November 2024
Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems.
View Article and Find Full Text PDFRapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these redox reactions.
View Article and Find Full Text PDFAdv Mater
August 2024
Institute of Advanced Battery Materials and Devices, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!