We describe the studies of new copper complexes [MeSPY2]CuPF(6), 2, and [MeSPY2]Cu(ClO(4))(2).CH(3)CN, 3, as models for the Cu(B) center of dopamine beta-hydroxylase and peptidylglycine alpha-hydroxylating monooxygenase. The structure of [MeSPY2]Cu(ClO(4))(2).CH(3)CN, 3, has been established by X-ray crystallography. The copper coordination exhibits a square pyramidal geometry where the equatorial plane is occupied by the SCH(3) group and three nitrogen atoms (tertiary amine, one pyridine, and acetonitrile solvent), whereas the axial position binds the second pyridine. Using FEFF calculations and multiscattering interaction, EXAFS refinements show that the SMe group lies in the coordination sphere of copper complexes [MeSPY2]CuPF(6), 2, and [MeSPY2]Cu(ClO(4))(2).CH(3)CN, 3. While [MeSPY2]CuPF(6), 2, reacts with dioxygen in dichloromethane without oxidation of the ligand, we observed an oxidation of the sulfide ligand when [MeSPY2]Cu(ClO(4))(2).CH(3)CN, 3, reacts with hydrogen peroxide in methanol. Considering results, we propose that Met(314), crucial for DBH and PHM activity, could be the site of the H(2)O(2) (or ascorbate) inactivation by oxidation to the sulfoxide group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9709281 | DOI Listing |
Langmuir
January 2025
Perm State University, 15 Bukirev strasse, Perm 614068, Russia.
Copper(II) oxide nanoparticles (CuO NPs) are used in different industries and agriculture, thus leading to their release to the environment, which raises concerns about their ecotoxicity and biosafety. The main toxicity mechanism of nanometals is oxidative stress as a result of the formation of reactive oxygen species caused by metal ions released from nanoparticles. Bacterial biofilms are more resistant to physical and chemical factors than are planktonic cells due to the extracellular polymeric matrix (EPM), which performs a protective function.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Richmond, Richmond, Virginia 23173, United States.
Copper(I) complexes of isobutyl- () and isopropyl-substituted () proazaphosphatranes have been synthesized. Structural and computational studies of a series of monomeric complexes CuX (X = Cl, Br, I) and dimeric [CuCl] provide insight into the transannulation within and steric properties of the proazaphosphatrane ligand. These halide complexes are competent precatalysts in a model borylation reaction, and the silylamido complex CuN(TMS) catalyzes hydrosilylation of benzaldehyde under mild conditions.
View Article and Find Full Text PDFBioact Mater
April 2025
School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei, 230011, PR China.
Oxidative stress, dysbiosis, and immune dysregulation have been confirmed to play pivotal roles in the complex pathogenesis of inflammatory bowel disease (IBD). Herein, we design copper ion-luteolin nanocomplexes (CuL NCs) through a metal-polyphenol coordination strategy, which plays a multifaceted role in the amelioration of IBD. The fabricated CuL NCs function as therapeutic agents with exceptional antioxidant and anti-inflammatory capabilities because of their great stability and capacity to scavenge reactive oxygen species (ROS).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
The electrocatalytic aqueous ammonia oxidation (AO) represents a more sustainable alternative to accessing nitrite (NO) and nitrate (NO). We now report that Cu(pyalk) {pyalk = 2-(pyridin-2-yl)propan-2-oate}, previously employed as a homogeneous water oxidation (WO) catalyst, is also active for selective AO in aqueous environments. The traditional Griess analytical test for NO/NO was modified to permit the operation in the presence of the otherwise interfering Cu ion.
View Article and Find Full Text PDFACS Nano
January 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
Control of individual spins at the atomic level holds great promise for miniaturized spintronics, quantum sensing, and quantum information processing. Both single atomic and molecular spin centers are prime candidates for these applications and are often individually addressed and manipulated using scanning tunneling microscopy (STM). In this work, we present a hybrid approach and demonstrate a robust method for self-assembly of magnetic organometallic complexes consisting of individual iron (Fe) atoms and molecules on a silver substrate using STM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!