The new cyclic compound 2,2'-sulfurylbis(4-methyl-6-tert-butylphenyl) methyl 2-benzoate phosphite, O(2)S[(t-Bu)MeC(6)H(4)O](2)(OC(6)H(4)CO(2)Me)P (3), containing a salicylate ligand was synthesized from 2,2'-sulfurylbis(4-methyl-6-tert-butylphenyl) chlorophosphite and methyl salicylate in the presence of triethylamine in ether solution. X-ray analyses of bis(methyl salicylate-O)phenylphosphine, (OC(6)H(4)CO(2)Me)(2)PPh (1), and bis(methylsalicylato-O)phenyl(tetrachlorophenylene-1,2-dioxy)phosphorane, (O(2)C(6)Cl(4))(OC(6)H(4)CO(2)Me)(2)PPh (2), as well as that for 3 were obtained. The phosphane 1 has a pseudo trigonal bipyramidal (TBP) structure due to coordination of a carbonyl oxygen atom at an axial site. The cyclic phosphorane 2 and the phosphite 3 lack any coordination from salicylate ligands. This results in a TBP geometry and a pyramidal geometry respectively for 2 and 3. Comparisons with X-ray structures for carboxylate-containing phosphorus compounds exhibiting oxygen coordination show the formation of four- and five-membered cyclic systems. Thus, 1 appears to be the first example of formation of a six-membered ring via carbonyl oxygen coordination. Reference is made to the tyrosyl-tRNA synthetase system where it is proposed that carbonyl oxygen atom coordination is a likely occurrence in the transition state on the basis of the analysis presented in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic980288h | DOI Listing |
Biosci Rep
January 2025
Scotland's Rural College Animal and Veterinary Sciences Research Group, Edinburgh, United Kingdom.
Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Instituto de Química, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas 37130-000, MG, Brazil.
Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Ball State University, Muncie, IN 47306, USA.
Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar interactions between asparagine-300 (N300) in Sec61α and four oxygens in Ipom-F are crucial. One of the four oxygens is from the carbonyl group at C-4 of the fatty acid chain.
View Article and Find Full Text PDFMolecules
January 2025
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!