Hexacoordination via Sulfur Donor Action in Bicyclic Pentaoxyphosphoranes(1).

Inorg Chem

Department of Chemistry, Lederle Graduate Research Tower 701, Box 34510, University of Massachusetts, Amherst, Massachusetts 01003-4510.

Published: December 1997

New bicyclic oxyphosphoranes, S[(t-Bu)MeC(6)H(2)O](2)P(OC(6)H(5))(O(2)C(6)H(3)F) (1) and S[(t-Bu)MeC(6)H(2)O](2)P(OC(6)H(5))(O(2)C(6)H(4)) (3), were synthesized by displacement reactions of a monocyclic pentaoxyphosphorane by a diol, and S[(t-Bu)(2)C(6)H(2)O](2)P(OCH(2)CF(3))(O(2)C(6)Cl(4)) (2) and S[(t-Bu)(2)C(6)H(2)O](2)P(C(6)H(5))(O(2)C(6)Cl(4)) (4), by oxidative addition reactions of a phosphite or phosphine with tetrachlorobenzoquinone. X-ray studies revealed hexacoordinated structures formed by the presence of a sulfur donor atom incorporated in a flexible eight-membered ring. The structures were displaced along a coordinate from a square pyramid toward an octahedron. (31)P and (1)H NMR data are also reported. Comparisons are made between bicyclic tetraoxyphosphoranes and monocyclic and bicyclic pentaoxyphosphoranes which show the importance of ligand electronegativity in increasing the degree of hexacoordination. Of the various series now studied, the extent of sulfur donor atom coordination increases in the following order: phosphates < phosphites < oxyphosphoranes. It is concluded that, in general, sulfur donor atom coordination will take place with phosphorus in any of the common coordination geometries in the presence of sufficiently electronegative ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic970724kDOI Listing

Publication Analysis

Top Keywords

sulfur donor
16
donor atom
12
atom coordination
8
hexacoordination sulfur
4
donor
4
donor action
4
bicyclic
4
action bicyclic
4
bicyclic pentaoxyphosphoranes1
4
pentaoxyphosphoranes1 bicyclic
4

Similar Publications

The A Adenosine Receptor (AAR) is an important therapeutic target due to its role in inflammation and immune response regulation. Herein, we synthesized and evaluated 5'-deoxy-adenosine derivatives with oxygen at the 4'-position, comparing them to previously studied 4'-thionucleosides. Compound exhibited the highest binding affinity ( = 5.

View Article and Find Full Text PDF

Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!