Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A condensation reaction between ethylenediaminetetraacetic dianhydride and p-xylenediamine gave a new chelating cyclophane, 3,10,21,28-tetraoxo-5,8,23,26-tetrakis(carboxymethyl)-2,5,8,11,20,23,26,29-octaaza[12.12]paracyclophane, abbreviated as (32edtaxan)H(4), which has three types of electron-donor groups, i.e., amine, carboxylate, and amide groups. The formation of the cyclophane has been confirmed by a single-crystal X-ray analysis of its Zn(2+) complex, [Zn(2)(32edtaxan)].7.5H(2)O, which crystallized in the monoclinic space group P2(1)/c with a = 19.818(1) Å, b = 13.169(1) Å, c = 18.134(1) Å, beta = 104.491(6) degrees, and Z = 4. Each cyclophane molecule coordinates two Zn(2+) ions and results in the formation of a binuclear chelate molecule. The coordination geometry around each metal ion is distorted octahedral, the donor atoms being two carboxylate oxygen atoms, two amine nitrogen atoms, and two amide oxygen atoms. The new cyclophane exhibited a well-defined fluorescence band at 290 nm with 210 nm excitation. The emission intensity was markedly increased in the Zn(2+) complex, in which the coordination of Zn(2+) ions increases the rigidity of the cyclophane leading to a high fluorescence quantum yield. When the cyclophane was coordinated to Cu(2+) ions, the molar absorptivity of a pi-pi transition band observed at 260 nm was increased by a factor of about 10. Such a large spectral change was not observed for the Zn(2+) and Ni(2+) complexes. In the Cu(2+) complex, the two phenyl rings of the cyclophane are expected to be brought closer, as a result of the coordination of deprotonated amide nitrogens to the central metal ion. This allosterism via ring contraction is responsible for the novel behavior of the absorption spectrum. The emission band of the cyclophane was weakened by coordination of copper and nickel as a result of fluorescence quenching caused by a photo-induced electron transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9614374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!