Theoretical and Experimental Studies of Six-Membered Selenium-Sulfur Nitrides Se(x)()S(4)(-)(x)()N(2) (x = 0-4). Preparation of S(4)N(2) and SeS(3)N(2) by the Reaction of Bis[bis(trimethylsilyl)amino]sulfane with Chalcogen Chlorides.

Inorg Chem

Departments of Chemistry, University of Oulu, Linnanmaa, 90570 Oulu, Finland, University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland, and The University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4.

Published: May 1997

AI Article Synopsis

Article Abstract

The reaction of [(Me(3)Si)(2)N](2)S with equimolar amounts of SCl(2) and S(2)Cl(2) produces S(4)N(2) in a good yield. The reaction of [(Me(3)Si)(2)N](2)S with a 3:1:1 mixture of S(2)Cl(2), Se(2)Cl(2), and SeCl(4) yields a dark brown-red insoluble material that was inferred to be mainly SSeSNSN on the basis of the elemental analysis, mass spectroscopy, vibrational analysis, and NMR spectroscopy. Attempts to prepare selenium-rich species resulted in the formation of elemental selenium or Se(3)N(2)Cl(2). The experimental work was supported by ab initio MO calculations which establish the structural and stability relationships of the different members of the series 1,3-Se(x)()S(4)(-)(x)()N(2) (x = 0-4). Full geometry optimization was carried out for each molecular species using the polarized split-valence MIDI-4 basis sets. The effects of electron correlation were taken into account involving the second-order Møler-Plessett perturbation theory. Each molecule was found to lie in an approximate half-chair conformation that is well established for 1,3-S(4)N(2) (i.e., interacting planar NEN and EEE fragments; E = S, Se). The bond parameters agree well with experimental information where available. Whereas the lengths of the bonds in the NEEEN fragment approach those of the single bonds, the bonds in the NEN fragment show marked double bond character. The stabilities of the molecules decrease expectedly with increasing selenium content as judged by the total binding energy at the MP2 level of theory. Within a given chemical composition, isomers containing a N=Se=N unit lie higher in energy than those containing a N=S=N unit. These results may explain why selenium-rich Se(x)()S(4)(-)(x)()N(2) molecules have not been isolated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9613570DOI Listing

Publication Analysis

Top Keywords

reaction [me3si2n]2s
8
theoretical experimental
4
experimental studies
4
studies six-membered
4
six-membered selenium-sulfur
4
selenium-sulfur nitrides
4
nitrides sexs4-xn2
4
sexs4-xn2 0-4
4
0-4 preparation
4
preparation s4n2
4

Similar Publications

The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.

View Article and Find Full Text PDF

Tannin additions decrease the concentration of malodorous volatile sulfur compounds in wine-like model solutions and wine.

Food Chem

January 2025

Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Talca, Chile.

Hydrogen sulfide (HS), methanethiol (MeSH) and ethanethiol (EtSH) are volatile sulfur compounds (VSCs) produced during winemaking and are associated with negative 'reductive' aromas in wine. Anecdotal evidence suggests that oenological tannins may be used to remediate the 'reductive' character of wines, yet little scientific evidence or explanation supporting this observation has been published. In this study, it was found that the addition of oenological tannins significantly decreased HS, MeSH, and EtSH in model wine by up to 92 %, 90 % and 86 %, respectively, after two weeks of storage.

View Article and Find Full Text PDF

Coordination of inorganic disulfide species to ferric N-acetyl microperoxidase 11.

Biochem Biophys Res Commun

January 2025

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina. Electronic address:

The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11Fe) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS) to NAcMP11Fe.

View Article and Find Full Text PDF

A novel multi-molecular beam/infrared reflection absorption spectroscopy (IRAS) apparatus is described, which was constructed for studying mechanisms and kinetics of heterogeneously catalyzed reactions following a rigorous surface science approach in the pressure range from ultrahigh vacuum (UHV, 1 × 10-10 mbar) to near-ambient pressure (NAP, 1000 mbar) conditions. The apparatus comprises a preparation chamber equipped with standard surface science tools required for the preparation and characterization of model heterogeneous catalysts and two reaction chambers operating at different pressure ranges: in UHV and in the variable pressure range up to NAP conditions. The UHV reaction chamber contains two effusive molecular beams (flux up to 1.

View Article and Find Full Text PDF

Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!