Conformational and Coordination Equilibria on DOTA Complexes of Lanthanide Metal Ions in Aqueous Solution Studied by (1)H-NMR Spectroscopy.

Inorg Chem

Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali dell'Università degli Studi di Torino, Via P. Giuria, 7, 10127 Torino, Italy, Institut de Chimie Minérale et Analytique, Université de Lausanne, BCH, 1015 Lausanne, Switzerland, and Departamento de Bioquímica, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Apartado 3126, 3000 Coimbra, Portugal.

Published: May 1997

A variable-temperature, -pressure, and -ionic strength (1)H NMR study of the DOTA complexes of different trivalent cations (Sc, Y, La, Ce --> Lu) (DOTA = 1,4,7,10-tetraaza-1,4,7,10-tetrakis(carboxymethyl)cyclododecane) yielded data that are in contradiction with the hitherto used model of only two enantiomeric pairs of diastereoisomers that differ in the ligand conformations. A two-isomer equilibrium cannot explain the newly observed apparent reversal of the isomer ratio at the end of the series. As both conformers may lose their inner sphere water molecule, a coordination equilibrium may be superimposed on this conformational equilibrium, as shown by large positive reaction volumes for the isomerization of [Ln(DOTA)(H(2)O)(x)()](-) (Ln = Yb, Lu; x = 1, 0). The isomerization of [Nd(DOTA)(H(2)O)](-) and [Eu(DOTA)(H(2)O)](-) is purely conformational, as shown by near-zero reaction volumes. The measured isomerization enthalpies and entropies agree with this model. The shift of the isomerization equilibria by a variety of non-coordinative salts depends on the ligand conformation rather than the presence or absence of the inner sphere water molecule. This results from weak ion binding and water solvent stabilization of one ligand conformation, rather than the decrease of the activity of the bulk water in the solution, as shown by UV-vis measurements of the coordination number sensitive transition (5)F(0) --> (7)D(0) of Eu(III) as a function of ionic strength. Fluoride ions replace a water molecule in the inner coordination sphere, preferentially for one of the conformational isomers, as proven by (19)F-NMR shifts and the appearance of a third set of resonances corresponding to [Eu(DOTA)F](2)(-) in the (1)H-NMR spectrum of [Eu(DOTA)(H(2)O)](-).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic961364oDOI Listing

Publication Analysis

Top Keywords

water molecule
12
dota complexes
8
inner sphere
8
sphere water
8
reaction volumes
8
ligand conformation
8
water
5
conformational
4
conformational coordination
4
coordination equilibria
4

Similar Publications

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

Resins are complex mixtures of natural constituents containing non-volatile and volatile terpenes, in combination with gums and polyphenols, used since ancient times for their medicinal properties. Current research has evidenced their therapeutic value with a plethora of activities. The main limits of resins and their constituents for their clinical use are low water solubility, poor stability and bioavailability.

View Article and Find Full Text PDF

Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!