Aryldiazene complexes [Mn(CO)(3)(ArN=NH)P(2)]BF(4) (1, 2) and [{Mn(CO)(3)P(2)}(2)(&mgr;-HN=NArArN=NH)](BF(4))(2) (3, 4) [P = PPh(OEt)(2), PPh(2)OEt; Ar = C(6)H(5), 2-CH(3)C(6)H(4), 4-CH(3)C(6)H(4), 4-CH(3)OC(6)H(4); ArAr = 4,4'-C(6)H(4)C(6)H(4), 4,4'-(2-CH(3))C(6)H(3)C(6)H(3)(2-CH(3)), 4,4'-C(6)H(4)CH(2)C(6)H(4)] were prepared by reacting hydride species MnH(CO)(3)P(2) with the appropriate aryldiazonium cations in CH(2)Cl(2) or acetone solutions at -80 degrees C. The compounds were characterized by IR, (1)H and (31)P NMR spectra (with (15)N isotopic substitution), and a single-crystal X-ray structure determination. The complex [Mn(CO)(3)(4-CH(3)C(6)H(4)N=NH){PPh(OEt)(2)}(2)]BF(4) (1c) crystallizes in the space group C2/c with a = 31.857(5) Å, b = 11.119(2) Å, c = 22.414(3) Å, beta = 97.82(1) degrees, and Z = 8. Treatment of aryldiazene compounds 1-4 with NEt(3) gave the pentacoordinate aryldiazenido [Mn(CO)(2)(ArN(2))P(2)] (5, 6) and [{Mn(CO)(2)P(2)}(2)(&mgr;-N(2)ArArN(2))] (7, 8) [P = PPh(OEt)(2), PPh(2)OEt; Ar = C(6)H(5), 4-CH(3)C(6)H(4); ArAr = 4,4'-C(6)H(4)C(6)H(4), 4,4'-(2-CH(3))C(6)H(3)C(6)H(3)(2-CH(3))] derivatives. Protonation reactions of these aryldiazenido complexes 5-8 with HCl afforded the aryldiazene [MnCl(CO)(2)(ArN=NH)P(2)] (9) and [{MnCl(CO)(2)P(2)}(2)(&mgr;-HN=NArArN=NH)] (10) derivatives. Hydrazine complexes [Mn(CO)(3)(RNHNH(2))P(2)]BPh(4) (11, 12) [P = PPh(OEt)(2), PPh(2)OEt; R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4)] were prepared by allowing hydride species MnH(CO)(3)P(2) to react first with triflic acid and then with the appropriate hydrazine. Their characterization by IR, (1)H and (31)P NMR spectra, and an X-ray crystal structure determination is reported. The compound [Mn(CO)(3)(NH(2)NH(2)){PPh(OEt)(2)}(2)]BPh(4) (11a) crystallizes in the space group P&onemacr; with a = 13.772(3) Å, b = 14.951(4) Å, c = 13.319(3) Å, alpha = 104.47(1) degrees, beta = 100.32(1) degrees, gamma = 111.08(1) degrees, and Z = 2. Oxidation reactions of hydrazine compounds 11 and 12 with Pb(OAc)(4) at -40 degrees C gave stable aryldiazene [Mn(CO)(3)(RN=NH)P(2)]BPh(4) and thermally unstable (upon reaching -40 degrees C) diazene [Mn(CO)(3)(HN=NH)P(2)]BPh(4) derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9608612 | DOI Listing |
Dalton Trans
February 2007
Dipartimento di Chimica, Università Ca'Foscari di Venezia, Dorsoduro, 2137, 30123, Venezia, Italy.
Azide complexes [M(RN(3))(CO)(3)P(2)]BPh(4)[M = Mn, Re; R = C(6)H(5)CH(2), 4-CH(3)C(6)H(4)CH(2), C(6)H(5), 4-CH(3)C(6)H(4), C(5)H(9); P = PPh(OEt)(2), PPh(2)(OEt)] were prepared by allowing tricarbonyl MH(CO)(3)P(2) hydride complexes to react first with Brønsted acid (HBF(4), CF(3)SO(3)H) and then with organic azide in the dark. In sunlight the reaction yielded tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes or, with benzyl azide, imine [M{eta(1)-NH[double bond, length as m-dash]C(H)Ar}(CO)(3)P(2)]BPh(4)(Ar = C(6)H(5), 4-CH(3)C(6)H(4)) derivatives. Tetraazabutadiene [M(eta(2)-1,4-R(2)N(4))(CO)(2)P(2)]BPh(4) complexes were also prepared by reacting dicarbonyl MH(CO)(2)P(3) species first with Brønsted acid and then with an excess of organic azide.
View Article and Find Full Text PDFInorg Chem
February 2004
Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy.
Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3]]BPh4 (7) complex was also prepared by reacting RuCl2(bpy)2.
View Article and Find Full Text PDFInorg Chem
February 2004
Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro, 2137, 30123 Venezia, Italy.
Inorg Chem
October 1998
Dipartimento di Chimica and Dipartimento di Chimica Fisica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy, and Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Centro CNR di Strutturistica Diffrattometrica, Università di Parma, Viale delle Scienze, 43100 Parma, Italy.
Mono- and binuclear aryldiazenido complexes [Fe(ArN(2))(CO)(2)P(2)]BPh(4) (1-4) and [{Fe(CO)(2)P(2)}(2)(&mgr;-N(2)Ar-ArN(2))](BPh(4))(2) (5-8) [P = P(OEt)(3), PPh(OEt)(2), PPh(2)OEt, P(OPh)(3); Ar = C(6)H(5), 2-CH(3)C(6)H(4), 4-CH(3)C(6)H(4); Ar-Ar = 4,4'-C(6)H(4)-C(6)H(4), 4,4'-(2-CH(3))C(6)H(3)-C(6)H(3)(2-CH(3)), 4,4'-C(6)H(4)-CH(2)-C(6)H(4)] were prepared by allowing hydride species FeH(2)(CO)(2)P(2) to react with an excess of mono- (ArN(2))(BF(4)) or bis-aryldiazonium (N(2)Ar-ArN(2))(BF(4))(2) salts, respectively, at low temperature. A reaction path involving a hydride-aryldiazene intermediate [FeH(ArN=NH)(CO)(2)P(2)](+), which, through the loss of H(2), affords the final aryldiazenido complexes 1-8, is proposed. The compounds were characterized by (1)H and (31)P{(1)H} NMR spectroscopy (including (15)N isotopic substitution) and X-ray crystal structure determination.
View Article and Find Full Text PDFInorg Chem
February 1998
Dipartimento di Chimica, Università di Venezia, Dorsoduro 2137, 30123 Venezia, Italy, and Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Centro CNR di Strutturistica Diffrattometrica, Università di Parma, Viale delle Scienze, 43100 Parma, Italy.
Reaction of OsH(2)P(4) [P = P(OEt)(3), PPh(OEt)(2), PPh(2)OEt] with methyl triflate followed by the treatment with hydrazines gave the [OsH(RNHNH(2))P(4)]BPh(4) (1-3) (R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4)) derivatives. Instead, the reaction of OsH(2)P(4) first with methyl triflate, then with triflic acid, and finally with an excess of the appropriate hydrazine afforded the bis(hydrazine) [Os(RNHNH(2))(2)P(4)](BPh(4))(2) (4, 5) (R = H, CH(3), C(6)H(5)) complexes. Also the [Os(NH(2)NH(2)){P(OEt)(3)}(5)](BPh(4))(2) (7) derivative was prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!