Zinc-thiolate intermediate in catalysis of methyl group transfer in Methanosarcina barkeri.

Biochemistry

Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA.

Published: October 2001

Methyl group transfer reactions are essential in methane-forming pathways in all methanogens. The involvement of zinc in catalysis of methyl group transfer was studied for the methyltransferase enzyme MT2-A important for methanogenesis in Methanosarcina barkeri growing on methylamines. Zinc was shown to be required for MT2-A activity and was tightly bound by the enzyme with an apparent stability constant of 10(13.7) at pH 7.2. Oxidation was a factor influencing activity and metal stoichiometry of purified MT2-A preparations. Methods were developed to produce inactive apo MT2-A and to restore full activity with stoichiometric reincorporation of Zn(2+). Reconstitution with Co(2+) yielded an enzyme with 16-fold higher specific activity. Cysteine thiolate coordination in Co(2+)-MT2-A was indicated by high absorptivity in the 300-400 nm charge transfer region, consistent with more than one thiolate ligand at the metal center. Approximate tetrahedral geometry was indicated by strong d-d transition absorbance centered at 622 nm. EXAFS analyses of Zn(2+)-MT2-A revealed 2S + 2N/O coordination with evidence for involvement of histidine. Interaction with the substrate CoM (2-mercaptoethanesulfonic acid) resulted in replacement of the second N/O group with S, indicating direct coordination of the CoM thiolate. UV-visible spectroscopy of Co(2+)-MT2-A in the presence of CoM also showed formation of an additional metal-thiolate bond. Binding of CoM over the range of pH 6.2-7.7 obeyed a model in which metal-thiolate formation occurs separately from H(+) release from the enzyme-substrate complex. Proton release to the solvent takes place from a group with apparent pK(a) of 6.4, and no evidence for metal-thiolate protonation was found. It was determined that substrate metal-thiolate bond formation occurs with a Delta G degrees ' of -6.7 kcal/mol and is a major thermodynamic driving force in the overall process of methyl group transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0112917DOI Listing

Publication Analysis

Top Keywords

methyl group
16
group transfer
16
catalysis methyl
8
methanosarcina barkeri
8
metal-thiolate bond
8
formation occurs
8
group
6
transfer
5
zinc-thiolate intermediate
4
intermediate catalysis
4

Similar Publications

Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming.

Radiat Environ Biophys

January 2025

Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.

Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.

View Article and Find Full Text PDF

: Pulmonary exposure to emissions from manipulating solid surface composite (SSC) materials has been associated with adverse health effects in humans and laboratory animals. Previous and investigations of SSC toxicity have been limited by particle delivery methods that do not fully recapitulate the workplace environment. This study sought to determine the acute SSC-induced pulmonary responses whole-body inhalation exposure.

View Article and Find Full Text PDF

The first ground-state rotational spectrum of 3-methylstyrene (3MS) was measured by Fourier transform microwave spectroscopy under supersonic jet-cooled conditions. Transitions were assigned for two conformers: cis-3MS and trans-3MS. In the cis conformer, the vinyl group is oriented toward the methyl group, while in the trans conformer, it is positioned away from the methyl.

View Article and Find Full Text PDF

The elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of -benzodipyrrole (-BDP)-based A-DBD-A-type NFAs. In this work, two new A-DBD-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the -BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.

View Article and Find Full Text PDF

Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).

Methods: T2DM was induced in Wistar rats using streptozotocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!