This paper proposes a new goldfish model to predict pharmacodynamic/pharmacokinetic effects of drugs used to treat motion sickness administered in differing gravity loads. The assumption of these experiments is that the vestibular system is dominant in producing motion sickness and that the visual system is secondary or of small import in the production of motion sickness. Studies will evaluate the parameter of gravity and the contribution of vision to the role of the neurovestibular system in the initiation of motion sickness with and without pharmacologic agents. Promethazine will be studied first. A comparison of data obtained in different groups of goldfish will be done (normal vs. acutely and chronically bilaterally blinded vs. sham operated). Some fish will be bilaterally blinded 10 months prior to initiation of the experiment (designated the chronically bilaterally blinded group of goldfish) to evaluate the neuroplasticity of the nervous system and the associated return of neurovestibular function. Data will be obtained under differing gravity loads with and without a pharmacological agent for motion sickness. Experiments will differentiate pharmacological effects on vision vs. neurovestibular input to motion sickness. Comparison of data obtained in the normal fish and in acutely and chronically bilaterally blinded fish with those obtained in fish with intact and denervated otoliths will differentiate if the visual or neurovestibular system is dominant in response to altered gravity and/or drugs. Experiments will contribute to validation of the goldfish as a model for humans since plasticity of the central nervous system allows astronauts to adapt to the altered visual stimulus conditions of 0-g. Space motion sickness may occur until such an adaptation is achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0094-5765(01)00117-5DOI Listing

Publication Analysis

Top Keywords

motion sickness
32
bilaterally blinded
16
goldfish model
12
gravity loads
12
chronically bilaterally
12
effects drugs
8
motion
8
sickness
8
differing gravity
8
system dominant
8

Similar Publications

Background: To overcome the challenge of psychotherapist scarcity in applying pain psychotherapy in clinical practice, we developed a virtual reality (VR) program delivering weeks of pain psychotherapy without psychotherapists, with a focus on minimizing the risk of motion sickness.

Objectives: We conducted a single-arm pilot study to assess the efficacy and motion sickness associated with a VR session delivering guided imagery and breathing techniques selected from the initial course of our VR program, involving patients suffering from various acute and chronic pain.

Methods: Patients underwent a 15-min VR session.

View Article and Find Full Text PDF
Article Synopsis
  • Family caregivers (FCGs) of cancer patients in hospice face psychological challenges and decreased quality of life due to caregiving demands, signaling a need for supportive interventions.
  • A virtual reality (VR) nature experience was implemented, allowing FCGs to immerse themselves in calming scenes at home, which they found to enhance relaxation and provide an escape from their caregiving stress.
  • Preliminary findings indicate that the VR intervention is feasible and acceptable, suggesting it can support the emotional health of hospice FCGs, though further research with larger and more diverse groups is necessary.
View Article and Find Full Text PDF

Remote Extended Reality with Markerless Motion Tracking for Sitting Posture Training.

IEEE Robot Autom Lett

November 2024

Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, 10027, USA.

Dynamic postural control during sitting is essential for functional mobility and daily activities. Extended reality (XR) presents a promising solution for posture training in addressing conventional training limitations related to patient accessibility and ecological validity. We developed a remote XR rehabilitation system with markerless motion tracking for sitting posture training.

View Article and Find Full Text PDF

Background: With substantial resources allocated to develop virtual reality (VR)-based rehabilitation exercise programs for poststroke motor rehabilitation, it is important to understand how patients with stroke perceive these technology-driven approaches, as their perceptions can determine acceptance and adherence.

Objective: This study aimed to examine the perceptions of patients with stroke regarding an immersive VR-based exercise system developed to deliver shoulder, elbow, forearm, wrist, and reaching exercises.

Methods: A questionnaire was used to assess the perceptions of 21 inpatients who had experienced stroke (mean time from stroke onset: 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!