Download full-text PDF

Source

Publication Analysis

Top Keywords

effects side
4
side chain
4
chain aromatic
4
aromatic ring
4
ring reactivity
4
reactivity copperi
4
copperi complexes
4
complexes dioxygen
4
dioxygen work
4
work supported
4

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Background: Hypertension is the leading risk factor for cardiovascular disease (CVD). Despite advances in blood pressure management, significant racial and ethnic disparities persist, resulting in higher risks of stroke, heart disease, and mortality among non-White populations. Self-measured blood pressure (SMBP) monitoring, also known as home blood pressure monitoring, has shown promise in improving blood pressure control, especially when combined with feedback from healthcare providers.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Exploring TNFR1: from discovery to targeted therapy development.

J Transl Med

January 2025

School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.

This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.

View Article and Find Full Text PDF

Background: Ensuring equal access to affordable, high-quality, and satisfied healthcare for cancer patients is a challenge worldwide. Our study aimed to investigate preferences for public health insurance coverage of new anticancer drugs among non-small cell lung cancer (NSCLC) patients in China.

Methods: We identified six attributes of new anticancer drugs and adopted a Bayesian-efficient design to generate choice scenarios for a discrete choice experiment (DCE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!