Sensitive detection of transitional cell carcinoma of the bladder by microsatellite analysis of cells exfoliated in urine.

Int J Cancer

Unità Patologia Molecolare e Terapia Genica, IRCCS H. Casa Sollievo Sofferenza, Opera Padre Pio da Pietrelcina, San Giovanni Rotondo, Italy.

Published: November 2001

Transitional cell carcinoma (TCC) is the most common bladder tumor. Urine cytology can identify most high-grade tumors but sensitivity is lower if one includes lesions of all grades. Microsatellite marker alterations have been found in many tumor types including bladder cancer and have been used to detect cancer cells in body fluids including urine. The aim of our study is to further evaluate feasibility and sensitivity of microsatellite analysis to detect bladder cancer cells in urine. We studied 55 individuals: 21 with symptoms suggestive of bladder cancer, 23 patients with previous history of TCC and 11 healthy subjects. Genomic DNA was extracted from blood lymphocytes, urine sediment, bladder washings and tumor or normal bladder mucosa. Twenty highly informative microsatellite markers were analyzed for loss of heterozigosity (LOH) and microsatellite instability (MIN) by polymerase chain reaction. Microsatellite analysis of urine identified 33 of 34 (97%) patients with either primary or tumor recurrence, whereas urine cytology identified 27 of 34 (79%) patients (p = 0.0001). Detection of microsatellite abnormalities improved the sensitivity of detecting low-grade and/or stage bladder tumor: from 75-95% for grades G1-G2 and from 75-100% for pTis-pTa tumors. Bladder washings from 25 patients were also analyzed, and in all cases results were identical to those obtained from voided urine. None of the 16 patients without evidence of TCC showed LOH and/or MIN in urine samples or bladder washings. Interestingly, in a patient with persistent bladder mucosa abnormalities, microsatellite alterations were demonstrated 8 months before the histopathologic diagnosis of tumor recurrence. These results further indicate that microsatellite marker analysis is more sensitive than conventional urine cytology in detecting bladder cancer cells in urine and represents a potential clinical tool for monitoring patients with low-grade/stage TCC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1097-0215(20011120)95:6<364::aid-ijc1064>3.0.co;2-vDOI Listing

Publication Analysis

Top Keywords

bladder cancer
16
bladder
12
microsatellite analysis
12
urine cytology
12
cancer cells
12
bladder washings
12
urine
11
microsatellite
9
transitional cell
8
cell carcinoma
8

Similar Publications

Computed tomography-based nomogram for estimating progression-free survival probability in bladder cancer patients undergoing partial cystectomy.

Abdom Radiol (NY)

January 2025

Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, School of Medicine, Nankai University, Tianjin, China.

Purpose: To establish a prognostic model to estimate progression-free survival (PFS) probability in bladder cancer (BCa) patients undergoing partial cystectomy.

Material And Methods: Consecutive patients who underwent partial cystectomy between August 2012 and April 2021 were enrolled. The primary endpoint was PFS during the follow-up.

View Article and Find Full Text PDF

Although curcumin is a well-known natural polyphenol with many biological activities, its clinical application has been limited by low aqueous solubility and stability. Therefore, curcumin derivatives have been proposed to overcome these limitations and increase anticancer activity. This study tested curcumin derivatives with modified feruloyl moieties ( and ) and the β-diketo moiety () to better understand their anticancer mechanism against human bladder cancer cells.

View Article and Find Full Text PDF

The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).

View Article and Find Full Text PDF

Despite the high incidence of bladder cancer (it represents the 7th most common cancer in males), EAU guidelines do not recommend any technique for screening and prevention, whereas the main diagnostic tools remain computed tomography urography (CTU), cytology, and cystoscopy. Unfortunately, these gold-standard modalities are mainly characterized by low sensitivity and accuracy. To minimize the limitations and increase the detection rates of urothelial cancer, several technologies have been developed.

View Article and Find Full Text PDF

The innate immune response serves as the primary defense against viral infections, with the recognition of viral nucleic acids by pattern recognition receptors (PRRs) initiating antiviral responses. Mitochondrial antiviral-signaling protein (MAVS) acts as a pivotal adaptor protein in the RIG-I pathway. Alternative splicing further diversifies MAVS isoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!