The effects of K2PtCl4, cis-Pt(NH3)2Cl2, and trans-Pt(NH3)2Cl2 on the activities of glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, dihydrofolate reductase, fructose-1,6-bisphosphate aldolase, catalase, tyrosinase, and peroxidase have been investigated. All of the enzymes which are thought to have essential sulfhydryl groups (glyceraldehyde-3-phosphate dehydrogenase, aldolase, and glucose-6-phosphate dehydrogenase) were significantly inhibited by K2PtCl4. The other four enzymes studied are not known to have essential sulfhydryl groups, and were not significantly affected by the Pt compounds under the conditions employed. Glyceraldehyde-3-phosphate dehydrogenase was the only enzyme inhibited by all three Pt compounds tested, with K2PtCl4 being the most effective and cis-Pt(NH3)2Cl2 the least effective inhibitor. Semilogarithmic plots of residual activity versus inhibition time indicated that the inhibition reactions were not simple first-order processes, except for the inhibition of glucose-6-phosphate dehydrogenase by K2PtCl4 which appeared to be first-order with respect to enzyme concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2744(79)90105-0 | DOI Listing |
Biochem Pharmacol
January 2025
College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Institute of Science and Technology, Division of Periodontics, São Paulo State University (Unesp), Av. Eng. Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
Objective: This study aimed to compare the salivary protein profile in individuals with Type 2 Diabetes Mellitus (DM2) and periodontitis and their respective controls.
Methods: Eighty participants were included in the study. The four groups were formed by individuals with DM2 and periodontitis (DM2 + P, n = 20), DM2 without periodontitis (DM2, n = 20), periodontitis without DM2 (P, n = 20) and individuals without periodontitis and without DM2 (H, n = 20).
Plant Physiol
January 2025
Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China.
Biofilms can increase bacterial resistance to antibiotic therapies. Edwardsiella tarda with biofilm is highly resistant to antibacterial treatment, especially for the antibiotic-resistant strain. In this study, we obtained biofilm-inhibiting aptamers against antibiotic-resistant E.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in , different DH-Fe concentrations (0, 10, 20, and 40 μg·L) were applied to estimate its effects on C and N metabolism and antioxidative capacity in grown under 20°C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!