A novel method of protein encapsulation is proposed. Preformed protein aggregates are covered with polyelectrolyte layers by means of layer-by-layer adsorption. The polyelectrolyte membrane prevents protein leakage out of the capsule. Using chymotrypsin as a model enzyme the capsule wall selective permeability was demonstrated for substrates and inhibitors of different molecular weight and solubility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.1184DOI Listing

Publication Analysis

Top Keywords

layer-by-layer adsorption
8
protein aggregates
8
protein
5
encapsulation proteins
4
proteins layer-by-layer
4
adsorption polyelectrolytes
4
polyelectrolytes protein
4
aggregates factors
4
factors regulating
4
regulating protein
4

Similar Publications

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin.

View Article and Find Full Text PDF

Efficient Strategy for Protein Drug Carrier Design for Insights into the Protein-Polyelectrolyte Interaction.

Langmuir

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.

The protein carrier and encapsulation system based on polyelectrolytes plays crucial roles in drug research and development. Traditional methods such as isothermal titration calorimetry and molecular dynamics simulation have illuminated parts of this complex relationship. However, they fall short of capturing the full picture of the interaction during the carrier's fabrication and protein loading dynamics.

View Article and Find Full Text PDF

Electrically conductive films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) are usually formed by spin coating of aqueous dispersions with PEDOT:PSS nanoparticles. To better understand the film formation, the adsorption conditions are investigated using dip coating and a flow cell with different flow rates. Multilayer films are formed by sequential adsorption of oppositely charged macromolecules or nanoparticles.

View Article and Find Full Text PDF

Investigation on topology-dependent adsorption and aggregation of protein on nanoparticle surface enabled by integrating time-limited proteolysis with cross-linking mass spectrometry.

Int J Biol Macromol

December 2024

School of Material Science and Food Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, 1 Xueyuan Road, Zhongshan 528402, Guangdong Province, People's Republic of China.

Article Synopsis
  • The study focuses on how the surface protein corona (PC) of nanomaterials, particularly nano-FeO surfaces, affects their biological identity, highlighting the need to characterize these PCs in situ.
  • Researchers used advanced techniques like time-limited proteolysis and mass spectrometry to analyze the spatial layout and molecular orientation of proteins in the PC over different time intervals.
  • They discovered various protein interactions primarily driven by charge complementarity and that certain structural conformations of proteins change due to nanoparticle interactions, providing new insights into how PCs form.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!