Stereoselective Synthesis of Dihydropyran-4-ones via a Formal Hetero Diels-Alder Reaction and Ceric Ammonium Nitrate Dehydrogenation.

J Org Chem

Lammot du Pont Laboratory, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716.

Published: October 1996

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo961325uDOI Listing

Publication Analysis

Top Keywords

stereoselective synthesis
4
synthesis dihydropyran-4-ones
4
dihydropyran-4-ones formal
4
formal hetero
4
hetero diels-alder
4
diels-alder reaction
4
reaction ceric
4
ceric ammonium
4
ammonium nitrate
4
nitrate dehydrogenation
4

Similar Publications

A straightforward synthesis of -dihydronaphthodioxine has been efficiently accomplished through Cu(II)-NHC catalysis, involving the stereoselective ring opening of -epoxides with quinoid-carbene. Intramolecular S2-like substitution facilitates the inversion of stereochemistry during -epoxide ring opening. This reaction has been developed under simple conditions, demonstrating a broad substrate scope with a wide chemoselective profile.

View Article and Find Full Text PDF

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

Multiple Diels-Alder reactions are a powerful method to construct large asymmetric scaffolds, but these reactions often produce numerous isomers. We now report a triple Diels-Alder reaction between a cyclic furan trimer and -substituted maleimides, achieving selective synthesis of a single asymmetric tris-adduct. The stereoselectivity of cycloaddition to π-extended furan derivatives was clarified by the experimental analysis of intermediates and theoretical calculations.

View Article and Find Full Text PDF

Transcriptome Analysis of and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis.

Molecules

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

The medicinal plant is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported.

View Article and Find Full Text PDF

Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!