Hapalosin was initially synthesized by macrolactonization, and a second synthesis was achieved by cycloamidation. In both syntheses, three of the five stereocenters in hapalosin were established by two Brown allylboration reactions. The synthesis of the non-N-Me analog of hapalosin involved chelation-controlled reduction of a gamma-amino-beta-keto ester and cycloamidation. In CDCl(3) at 25 degrees C, synthetic hapalosin exists as a 2.3:1 mixture of conformers, while its non-N-Me analog exists only as a single conformer. (1)H,(1)H-NOESY and computation reveal that the configuration of the amide bond is responsible for the conformations of the two compounds. The major conformer of hapalosin is found to be an s-cis amide, the minor conformer an s-trans amide, and the non-N-Me analog an s-trans amide. Applying distance constraints to protons that exhibit NOESY correlations, computation shows that the major conformer of hapalosin and the non-N-Me analog have very different conformations. By contrast, the minor conformer of hapalosin and the non-N-Me analog have very similar conformations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9608329DOI Listing

Publication Analysis

Top Keywords

non-n-me analog
20
conformer hapalosin
12
hapalosin
8
analog hapalosin
8
major conformer
8
minor conformer
8
s-trans amide
8
hapalosin non-n-me
8
analog conformations
8
analog
6

Similar Publications

Hapalosin was initially synthesized by macrolactonization, and a second synthesis was achieved by cycloamidation. In both syntheses, three of the five stereocenters in hapalosin were established by two Brown allylboration reactions. The synthesis of the non-N-Me analog of hapalosin involved chelation-controlled reduction of a gamma-amino-beta-keto ester and cycloamidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!