Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The enantiomer of (+)-allohedycaryol, a germacrane alcohol isolated from giant fennel (Ferula communis L.), has been synthesized, thereby elucidating the relative and absolute stereochemistry of the natural product. The synthesis of (-)-allohedycaryol started from (+)-alpha-cyperone (5) which was available in relatively large quantities via alkylation of imine 7 derived from (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine. In a number of steps 5 was converted into the mesylate 4with a regio- and stereoselective epoxidation as the key step. A Marshall fragmentation of 4 was used to prepare the trans,trans-cyclodeca-1,6-diene ring present in allohedycaryol. The conformation of synthetic (-)-allohedycaryol was elucidated via photochemical conversion into a bourbonane system. The synthesis of (-)-allohedycaryol also showed that natural (+)-allohedycaryol has the opposite absolute stereochemistry to that normally found in higher plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo9602534 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!