The use of aryloxy oxalyl chlorides (AOCs), aryloxy oxalyl tert-butyl peroxides (AOBs), and diaryl oxalates (DAOs) for unimolecular generation of phenoxyl-based radicals under solution and rigid matrix conditions is described. AOCs are usable for photochemical generation of phenoxyl radicals, but are only conveniently stable as precursors when 2,6-di-tert-butylated derivatives are used. AOBs may be used as thermal precursors to aryloxyl radicals, since they typically decompose within 2-3 h at 60-85 degrees C to give phenols. (1)H-NMR solution kinetic studies find that DeltaH() = 31 kcal/mol, and DeltaS() = +3.4 cal/mol-K for decomposition of phenoxyoxalyl tert-butyl peroxide, consistent with substantial concertedness in peroxide bond cleavage. AOBs and the more stable DAOs are also convenient photochemical phenoxyl radical precursors. AOBs yield phenoxyl radicals more readily by photolysis than do corresponding DAOs, but the DAOs have fewer side reactions that can quench the product phenoxyl radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo951696v | DOI Listing |
Chem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.
In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!