Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session38l7gpgcl18uaado1lcl1hce27ckmkpo): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rate of reduction of nitrite by trimethylamine-borane was followed by observing the decrease in nitrite absorbance under pseudo-first-order conditions. The reaction is acid-catalyzed and exhibits a first-order dependence on both amine-borane and total nitrite concentration. The molar equivalence of NaNO(2) to (CH(3))(3)NBH(3) = 2:1. Equimolar amounts of hydrogen and nitrous oxide are formed, and the molar ratio of nitrite reacted to N(2)O produced is 2:1. In concentrated HCl or H(2)SO(4), a correlation of rate with the Hammett acidity function, h(o), is observed. The reaction is subject to a pronounced inversesolvent isotope effect (k(D)()2(O)/k(H)()2(O) approximately 2.7) and a modest normal substrate effect (k((CH)()3())()3(N.BH)()3/k((CH)()3())()3(N.BD)()3 approximately 1.4). The reaction is first-order in H(3)O(+) in the region pH 0.7-2.7, but a second-order dependence is observed above pH 4 with the transition occurring at pH approximately pK(a) for HNO(2). Results are consistent with a mechanistic model involving preequilibration protonation of molecular nitrous acid followed by rate-limiting hydride attack on H(2)ONO(+) or free NO(+) to produce nitrosyl hydride as a reactive intermediate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9601549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!