The Ru(2) and RuNi derivatives of 1,8-bis(10,15,20-trimesityl-5-porphyrinato)anthracene-a recently reported cofacial diporphyrin ligand comprising two hindered porphyrins spanned by an anthracene bridge-have been synthesized. Both Ru(2)(DPAHM) and RuNi(DPAHM) are extremely reactive species that apparently contain 14-electron Ru(II) centers and, as is the case for their monoporphyrin analog, (5,10,15,20-tetramesitylporphyrinato)ruthenium [Ru(TMP)], must be rigorously protected from oxygen, nitrogen, and other ligating agents. In addition, these electron-deficient Ru(II) porphyrins all appear to bind aromatic solvents such as benzene and toluene, the weakest ligating solvents in which these Ru(II) porphyrins have been found soluble. Ru(TMP) and its metallodiporphyrin analogs, Ru(2)(DPAHM) and RuNi(DPAHM), catalyze H(2)/D(2) exchange in benzene solution and as solids. When adsorbed on a particularly nonpolar carbon support, these Ru(II) porphyrins all manifest significant activity with respect to catalytic H(2)/D(2) exchange [approximately 40 turnovers s(-)(1), when normalized for Ru(II) content]. In addition, these molecules slowly catalyze the exchange of H(2) into deuterated aromatic hydrocarbons and, in the absence of solvent, the exchange of D(2) into CH(4). Kinetic studies of H(2)/D(2) exchange catalyzed by these Ru(II) porphyrins on carbon supports indicate that exchange is likely to be effected by one face of a single Ru(TMP) moiety. The activity of each supported catalyst was suppressed by the presence of ligands, either exogenous (CO irreversibly and N(2) reversibly) or from polar functionalities on the surface of the supporting matrix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic951495+ | DOI Listing |
Org Lett
December 2024
GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.
A method to synthesize cofacial dimeric porphyrins bearing eight corannulene units has been developed. It relies on the stability of octahedral CO-capped Ru(II) complexes linked by N-donor ligands. This specific arrangement provides an optimal scaffold to accommodate fullerenes by imposing corannulene groups at a precise distance and relative orientation.
View Article and Find Full Text PDFDalton Trans
April 2023
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31-4, Moscow, 119071, Russia.
The coordination-driven design and synthesis of new stable supramolecular cluster-porphyrin (CP) hybrids based on an A-type ruthenium porphyrin 5,15-bis[(-tolyl)porphyrinato(2-)]ruthenium(carbonyl)(aqua) [RuDTolP(CO)H2O] and an octahedral molybdenum(II) iodide cluster with six terminal isonicotinate ligands (BuN)[{MoI}(OOC-CHN)] (PyMoC) are reported. The stepwise supramolecular assembly of the PyMoC "superoctahedron" with RuDTolP(CO)H2O has been studied by H NMR and 2D H-H COSY, H-N HMBC and DOSY techniques, as well as by UV-vis spectroscopy and HR-ESI mass spectrometry. The formation of discrete cluster-porphyrin CPn adducts with different numbers of coordinated porphyrins ( = 1-6), including the geometrical isomers of CP2, CP3 and CP4, has been observed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560 064, India.
There has been a widespread interest in developing self-assembled porphyrin nanostructures to mimic nature's light-harvesting processes. Herein, porphyrin-based coordination polymer gel (CPG) has been developed as a "soft" photocatalyst material for hydrogen (H) production from water under visible light. The CPG offers a hierarchical nanofibrous network structure obtained through self-assembly of a terpyridine alkyl-amide appended porphyrin (TPY-POR)-based low molecular weight gelator with ruthenium ions (Ru) and produces H with a rate of 5.
View Article and Find Full Text PDFTop Curr Chem (Cham)
September 2022
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.
Organic dyes, porphyrins and inorganic complexes containing imidazole (IM) motifs have been demonstrated as a new class of sensitizers in dye-sensitized solar cells (DSSCs). Particularly, the amphoteric nature of IM-based motifs allows them to be used as donors (D), auxiliary donors (D), linker/branch (π), or acceptors (A) in D-π-A-based organic dyes and porphyrins and also employed as cyclometalated heteroleptic and ancillary ligands in the Ru(II) and Ir(III) complexes for DSSCs. It is noteworthy that the introduction of IM chromophores in the dyes of D-π-A configuration can improve the light-harvesting properties and prohibit the charge recombination reactions due to the extension of the π-conjugated structures and hydrophobic nature.
View Article and Find Full Text PDFInorg Chem
September 2022
Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.
Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!