CO(2) Fixation by Novel Copper(II) and Zinc(II) Macrocyclic Complexes. A Solution and Solid State Study.

Inorg Chem

Department of Chemistry and Department of Energetic, University of Florence, Via Maragliano 75/77, 50144 Florence, Italy, Research and Development Division, Bracco SpA, Via Folli 50, 20134 Milano, Italy, Institute of Chemical Sciences, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy, and Department of Chemistry, University of Calabria, Arcavata di Rende, Italy.

Published: September 1996

Solutions containing Zn(II) and Cu(II) complexes with [15]aneN(3)O(2) rapidly adsorb atmospheric CO(2) to give {[ZnL](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) (2) and {[CuL](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) (4) complexes. The crystal structures of both complexes have been solved (for 2, space group R3c, a, b = 22.300(5) Å, c = 17.980(8) Å, V = 7743(4) Å(3), Z = 6, R = 0.0666, R(w)(2) = 0.1719; for 4, space group R3c, a, b = 22.292(7) Å, c = 10.096(8) Å, V = 7788(5) Å(3), Z = 6, R = 0.0598, R(w)(2) = 0.1611), and the spectromagnetic behavior of 4 has been studied. In both compounds a carbonate anion triply bridges three metal cations. Each metal is coordinated by one oxygen of the carbonate, three nitrogens, and an oxygen of the macrocycle; the latter donor weakly interacts with the metals. Although the two compounds are isomorphous, they are not isostructural, because the coordination geometries of Zn(II) in 2 and Cu(II) in 4 are different. The mixed complex {[CuZn(2)L(3)](&mgr;(3)-CO(3))}.(ClO(4))(4) has been synthesized. X-ray analysis (space group R3c, a, b = 22.323(7) Å, c = 17.989(9) Å, V = 7763(5) Å(3), Z = 6, R = 0.0477, R(w)(2) = 0.1371) and EPR measurements are in accord with a &mgr;(3)-carbonate bridging one Cu(II) and two Zn(II) ions in {[CuZn(2)L(3)](&mgr;(3)-CO(3))}(4+). Both the Zn(II) and Cu(II) cations exhibit the same coordination sphere, almost equal to that found in the trinuclear Zn(II) complex 2. The systems Zn(II)/L and Cu(II)/Lhave been studied by means of potentiometric measurements in 0.15 mol dm(-)(1) NaCl and in 0.1 mol dm(-)(3) NaClO(4) aqueous solutions; the species present in solution and their stability constants have been determined. In both systems [ML](2+) species and hydroxo complexes [M(II)LOH](+) (M = Zn, Cu) are present in solution. In the case of Cu(II), a [CuL(OH)(2)] complex is also found. The process of CO(2) fixation is due to the presence of such hydroxo-species, which can act as nucleophiles toward CO(2). In order to test the nucleophilic ability of the Zn(II) complexes, the kinetics of the promoted hydrolysis of p-nitrophenyl acetate has been studied. The [ZnLOH](+) complex promotes such a reaction, where the Zn(II)-bound OH(-) acts as a nucleophile to the carbonyl carbon. The equilibrium constants for the addition of HCO(3)(-) and CO(3)(2)(-) to the [ZnL](2+) complex have been potentiometrically determined. Only [ML(HCO(3))](+) and [ML(CO(3))] species are found in aqueous solution. A mechanism for the formation of {[ML](3)(&mgr;(3)-CO(3))}.(ClO(4))(4) is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic9603262DOI Listing

Publication Analysis

Top Keywords

znii cuii
12
space group
12
group r3c
12
co2 fixation
8
complexes
6
znii
6
cuii
5
complex
5
co2
4
fixation novel
4

Similar Publications

Syntheses, structures and anti-cancer activities of Cu and Zn complexes containing 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine].

Acta Crystallogr E Crystallogr Commun

January 2025

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two novel complexes, [Cu()Cl] and [Zn()Cl], were synthesized from 1,1'-[(3-fluoro-phen-yl)methyl-ene]bis-[3-(3-fluoro-phen-yl)imidazo[1,5-]pyridine] (), and copper(II) and zinc(II) chloride, respectively. The structures of these complexes were confirmed using ESI-MS, IR and H NMR spectra. The results reveal mononuclear structures in which the central metal atoms are coordinated by two N atoms from the imidazole rings and two Cl ligands.

View Article and Find Full Text PDF

A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) significantly influence the properties and performance of waste activated sludge. Various pretreatment protocols with different extraction efficiency and characteristics of EPS have been reported, which markedly impact subsequent treatment and disposal of sewage sludge. This study systematically assesses the EPS properties from twelve extraction pretreatment methods.

View Article and Find Full Text PDF

New Cd(II), Zn(II), and Cu(II) chelates with cetirizine.2HCl (CETZ.2HCl) in incidence of 1,10 phenanthroline monohydrate (Phen.

View Article and Find Full Text PDF

Co(II), Cu(II), and Zn(II) thio-bis(benzimidazole) complexes induce apoptosis via mitochondrial pathway.

J Inorg Biochem

March 2025

Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-779 00 Olomouc, Czech Republic. Electronic address:

The copper(II), cobalt(II), and zinc(II) complexes with 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) and 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb), [Cu(tbb)Cl] (1), [Co(tbb)Cl] (2), [Zn(tbb)Cl] (3), [Cu(tebb)Cl(HO)]Cl (4), [Co(tebb)Cl]·nCHOH (5) and [Zn(tebb)Cl(HO)]Cl (6), have been prepared and evaluated for antiproliferative activity. The structure of (4) was proved by X-ray diffraction crystallography. The coordination compounds were tested for their cytotoxic activities in cancer cell lines in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!