The reactions of the cyclic thionylphosphazenes [NSOX(NPCl(2))(2)] (1, X = Cl; 2, X = F) with three oxygen-based nucleophiles of increasing basicity, sodium phenoxide (NaOPh), sodium trifluoroethoxide (NaOCH(2)CF(3)), and sodium butoxide (NaOBu) have been studied. The reaction of 1 and 2 with 4 equiv of NaOPh at 25 degrees C yielded the regioselectively tetrasubstituted species [NSOX{NP(OPh)(2)}(2)] (5d, X = Cl; 6d, X = F). Further reaction of 5d with an additional 2 equiv of NaOPh over several days or at elevated temperatures gave the fully substituted compound [NSO(OPh){NP(OPh)(2)}(2)] (5e), whereas 6d did not react further. The reaction of 1 and 2 with 5 equiv of NaOCH(2)CF(3) yielded in both cases [NSO(OCH(2)CF(3)){NP(OCH(2)CF(3))(2)}(2)] (7e), and similarly reaction with 5 equiv of NaOBu yielded [NSO(OBu){NP(OBu)(2)}(2)] (9e). In all cases, the reactions were monitored by (31)P NMR and (where applicable) (19)F NMR and were found to involve complete substitution at phosphorus via a predominantly vicinal pathway, followed by substitution at sulfur. Substitutional control of the reactions of NaOPh, NaOBu, with 1 and 2 was found to conform to the following general order of reactivity, PCl(2) > PCl(OR) > SOX (X = Cl, F). Although the reaction with NaOCH(2)CF(3) followed the same order of reactivity, a significant enhancement of reaction rate was detected with each equivalent of trifluoroethoxide added. Reaction of 7e with excess NaOCH(2)CF(3) led to elimination of (CF(3)CH(2))(2)O and the formation of the salts Na[NSO(OCH(2)CF(3))NP(OCH(2)CF(3))(2)NP(OCH(2)CF(3))O] (11) and Na[NS(O)O{NP(OCH(2)CF(3))(2)}(2)] (12). Crystals of 6d are triclinic, space group P&onemacr;, with a = 9.789(3) Å, b = 11.393(4) Å, c = 12.079(5) Å, alpha = 107.40(3) degrees, beta = 91.23(3) degrees, gamma = 93.18(3), V = 1283.6(8) Å(3), and Z = 2. Crystals of 5e are monoclinic, space group C2/c, with a = 32.457(3) Å, b = 10.747(1) Å, c = 18.294(2) Å, beta = 110.37(1) degrees, V = 5982.4(9) Å(3), and Z = 8.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9516166 | DOI Listing |
Dalton Trans
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.
The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States.
Acid catalyzed condensation of -alkyltripyrranes with trialdehydes derived from 1,3-cyclopentadiene or methyl-1,3-cyclopentadiene, followed by oxidation with aqueous ferric chloride solutions, gave 23-alkyl-21-carbaporphyrin-2-carbaldehydes in 22-27% yield together with weakly aromatic oxycarbaporphyrins. The carbaporphyrins reacted with palladium(II) acetate or nickel(II) acetate to give organometallic complexes but in both cases alkyl group migration took place to generate 21-alkyl derivatives. Although this type of reactivity had been observed previously for palladium complexes, this is the first time the phenomenon has been seen in nickel(II) carbaporphyrins.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
The synthesis, characterization, and reactivity of a NiOH core bearing a tridentate redox-active ligand capable of reaching three molecular oxidation states is presented in this paper. The reduced complex [LNiOH] was characterized by single-crystal X-ray diffraction analysis, depicting a square-planar NiOH core stabilized by intramolecular H-bonding interactions. Cyclic voltammetry measurements indicated that [LNiOH] can be reversibly oxidized to [LNiOH] and [LNiOH] at very negative reduction potentials (-1.
View Article and Find Full Text PDFJ Org Chem
December 2024
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China.
To date, a general approach for the direct α-acyloxylation of cyclic 1,3-dicarbonyls remains challenging. Herein, we report a Pd-catalyzed α-acyloxylation of cyclic 1,3-dicarbonyl-derived hypervalent iodine compounds with highly abundant carboxylic acids. Our approach utilizes a commercially available Pd(OAc) catalyst, which exhibits mild reaction conditions, scalability, operational simplicity, and robustness against moisture and air.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!