Photophysics of Supercomplexes. Adduct between Ru(bpy)(CN)(4)(2-) and the [32]ane-N(8)H(8)(8+) Polyaza Macrocycle.

Inorg Chem

Departamento de Quimica (CQFB), Universidade Nova de Lisboa, 2825 Monte da Caparica, Portugal.

Published: May 1996

The formation of a supercomplex between the Ru(bpy)(CN)(4)(2-) (bpy = 2,2'-bipyridine) complex and the [32]ane-N(8)H(8)(8+) macrocycle (1) has been studied in water and in acetonitrile. In acetonitrile, supercomplex formation is accompanied by (i) large hypsochromic shifts in the absorption spectrum (color changes from deep violet to yellow) and in the emission spectrum, (ii) large anodic shifts in standard oxidation (0.73 V) and reduction (0.37 V) potentials, (iii) typical shifts of (1)H-NMR signals for the macrocycle N-bound protons and the complex bipyridine protons, and (iv) a large increase in the MLCT excited-state lifetime of the complex. In water, the spectral shifts and the changes in standard potential are much less pronounced, but supercomplex formation is evidenced by (13)C-NMR (and (1)H-NMR) and by emission lifetime changes. In both solvents, supercomplex formation is complete in 1:1, 1.0 x 10(-4) M solutions, indicating very large stability constant values. A structure of the supercomplex with the macrocycle bound in a "boat" conformation to the four cyanide ligands of the complex, plausible in terms of molecular models, is consistent with all the experimental data. In water, the supercomplex further associates with added negative species containing carboxylate functions, as shown by partial reversal of the lifetime changes. When the added species is also a potential electron transfer quencher (such as, e.g., Rh(dcb)(3)(3-), dcb = 4,4'-dicarboxy-2,2'-bipyridine), however, association is not accompanied by quenching. This behavior is attributed to the structure of the supercomplex-quencher adduct, in which the macrocycle acts as an insulating spacer between the excited complex and the quencher.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic951590iDOI Listing

Publication Analysis

Top Keywords

supercomplex formation
12
lifetime changes
8
supercomplex
6
macrocycle
5
complex
5
photophysics supercomplexes
4
supercomplexes adduct
4
adduct rubpycn42-
4
rubpycn42- [32]ane-n8h88+
4
[32]ane-n8h88+ polyaza
4

Similar Publications

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

Formation of I+III supercomplex rescues respiratory chain defects.

Cell Metab

January 2025

Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore. Electronic address:

Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I+III, resolved at 3.

View Article and Find Full Text PDF

PSD95 is an abundant scaffolding protein that assembles multiprotein complexes controlling synaptic physiology and behavior. Confocal microscopy has previously shown that PSD95 is enriched in the postsynaptic terminals of excitatory synapses and two-dimensional (2D) super-resolution microscopy further revealed that it forms nanoclusters. In this study, we utilized three-dimensional (3D) super-resolution microscopy to examine the nanoarchitecture of PSD95 in the mouse brain, characterizing the spatial arrangement of over 8 million molecules.

View Article and Find Full Text PDF

Measurement of Lipid Transport in Mitochondria by the MTL Complex.

Methods Mol Biol

December 2024

Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Universite Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.

Membrane biogenesis requires an extensive traffic of lipids between different cell compartments. Two main pathways, the vesicular and non-vesicular pathways, are involved in such a process. Whereas the mechanisms involved in vesicular trafficking are well understood, less is known about non-vesicular lipid trafficking, particularly in plants.

View Article and Find Full Text PDF

Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

Proc Natl Acad Sci U S A

December 2024

Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

Article Synopsis
  • Haptophyta is a taxonomic group with unique plastids derived from red algae; this study focuses on the structure of their photosystem I-light-harvesting complex I (PSI-LHCI) supercomplex using cryoelectron microscopy.
  • The PSI core is made up of 12 subunits that have adapted differently from those in red algae and cryptophytes, losing the PsaO subunit and gaining the PsaK subunit, along with 22 antenna proteins that arrange into a trilayered structure.
  • A previously unidentified pigment-binding subunit, L, was found in the PSI-iFCPI, which helps with energy transfer between the proteins, and computer simulations show that this complex efficiently transfers excitation
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!