Reaction of 1,4-diisocyanobenzene or 4-isocyanobenzonitrile with trans-W(N(2))(2)(DPPE)(2) (DPPE = 1,2-bis(diphenylphosphino)ethane) produced cis-WL(2)(DPPE)(2), where L = 1,4-diisocyanobenzene or 4-isocyanobenzonitrile. cis-(CNC(6)H(4)NC)(2)W(DPPE)(2) crystallizes in the triclinic space group P&onemacr;, with a = 12.848(3) Å, b = 13.596(3) Å, c = 19.072(3) Å, alpha = 78.99(2) degrees, beta = 70.66(2) degrees, gamma = 65.26(2) degrees, V = 2849.8(11) Å(3), and Z = 2. cis-(NCC(6)H(4)NC)(2)W(DPPE)(2) crystallizes in the triclinic space group P&onemacr;, with a = 12.712(3) Å, b = 13.700(3) Å, c = 19.109(3) Å, alpha = 77.91(2) degrees, beta = 70.63(2) degrees, gamma = 64.76(2) degrees, V = 2830.7(13) Å(3), and Z = 2. Both compounds possess a distorted octahedral geometry about the metal center, with the two isocyanide ligands cis to one another. The isocyanide ligands are substantially bent along the CNC axis of the isocyanide group coordinated to tungsten. For the complex containing the symmetric ligand, CNC(6)H(4)NC, the mean CNC angle for the coordinated end of the isocyanide is 139.1(11) degrees, the average W-C bond length is 1.86(1) Å, and the C&tbd1;N bond lengths have a mean value of 1.30(2) Å. These data indicate substantial back-donation from an electron-saturated tungsten atom. This is supported spectroscopically, with substantial shifts to lower wavenumbers for the C-N stretching frequencies of the coordinated isocyanide groups. Similar trends are observed in cis-(NCC(6)H(4)NC)(2)W(DPPE)(2). Both compounds contain electron-rich metals surrounded by large ligands which apparently protect the metals from atmospheric oxidation. The isocyanide ligands in both complexes contain a second coordinating group pointing away from the metal into the environment surrounding the molecules, providing the potential for polymetallic complexes containing metals in a variety of oxidation states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9508280 | DOI Listing |
Nano Lett
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.
The structural and chemical properties of metal nanoparticles are often dictated by their interactions with molecular ligand shells. These interactions are highly material-specific and can vary significantly even among elements within the same group or materials with similar crystal structure. In this study, we surveyed the heterogeneous interactions between an -terphenyl isocyanide ligand and Au and Ag nanoparticles (NPs) at the single-molecule limit.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.
The salt metathesis reaction involving a diamine-based antimony chloride precursor with sodium arsaethynolate in the presence of PMe leads to the formation of stibanyl-functionalized PMe-arsinidene (). Detailed analyses through single-crystal X-ray diffraction and density functional theory of confirm the presence of covalent Sb-As bonds and reveal its polarized nature with a multiple-bond character. In contrast to the formation of complex , substituting PMe with xylyl isocyanide or 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene () produces an isocyanide-arsinidene adduct () and an -arsaketene complex (), respectively.
View Article and Find Full Text PDFChemistry
December 2024
Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Institute for Sustainable and Circular Chemistry, Universitetisweg 99, 3584 CG, Utrecht, The, Netherlands.
Nickelacyclobutanes are reactive intermediates in catalytic cycles including cyclopropanation and insertion reactions. The stoichiometric study of these intermediates has shown that their reactivity is highly influenced by the coordination environment of the nickel center. A pentacoordinated nickelacyclobutane embedded in a diphosphine pincer ligand has been shown to selectively undergo various reactions with exogenous ligands, including [2+2] cycloreversion and carbene transfer to an isocyanide.
View Article and Find Full Text PDFBiomater Sci
December 2024
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
Herein, we describe a Zn-catalyzed atom-economical, inexpensive, and sustainable method for preparing a broad spectrum of substituted olefins utilizing alcohols as the main precursor. Using a Zn(II) complex [ZnLCl] () of the redox-noninnocent ligand 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (), various ()-olefins were prepared in good yields by coupling alcohols with sulfones and aryl cyanides under an inert atmosphere. Under an aerial atmosphere, vinyl nitriles were isolated in up to 82% yield reacting alcohols with benzyl cyanides in the presence of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!