Download full-text PDF

Source

Publication Analysis

Top Keywords

[microbial emission
4
emission immission
4
immission changes
4
changes germ
4
germ count
4
count cooling
4
cooling water
4
water operation
4
operation wet
4
wet cooling
4

Similar Publications

The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds.

Commun Earth Environ

January 2025

Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.

Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds.

View Article and Find Full Text PDF

Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms drive methane cycling, but little is known about their conservation across wetlands. To address this, we integrate 16S rRNA amplicon datasets, metagenomes, metatranscriptomes, and annual methane flux data across 9 wetlands, creating the Multi-Omics for Understanding Climate Change (MUCC) v2.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover.

View Article and Find Full Text PDF

Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities.

Environ Sci Technol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!