Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed conserved total arsenic transport and rapid arsenite oxidation occurring within the drainage channel. This environment was heavily colonized by Thermus aquaticus. In laboratory experiments, arsenite oxidation by cultures of Thermus aquaticus YT1 (previously isolated from Yellowstone National Park) and Thermus thermophilus HB8 was accelerated by a factor of over 100 relative to a biotic controls. Thermus aquaticus and Thermus thermophilus may therefore play a large and previously unrecognized role in determining arsenic speciation and bioavailability in thermal environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es010816f | DOI Listing |
Int J Mol Sci
December 2024
Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.
The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
Dysregulation of DNA methylation is associated with human disease, particularly cancer, and the assessment of aberrant methylation patterns holds great promise for clinical diagnostics. However, DNA polymerases do not effectively discriminate between processing 5-methylcytosine (5 mC) and unmethylated cytosine, resulting in the silencing of methylation information during amplification or sequencing. As a result, current detection methods require multi-step DNA conversion treatments or careful analysis of sequencing data to decipher individual 5 mC bases.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India.
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2024
Faculty of Science and Technology, UIN Sunan Ampel, Surabaya, Indonesia.
High fidelity DNA polymerase from Pyrococcus furiosus (Pfupol) is an attractive alternative to the highly popular DNA polymerase from Thermus aquaticus. Because this enzyme is in great demand for biotechnological applications, optimizing Pfupol production is essential to supplying the industry's expanding demand. T7-induced promoter expression in Escherichia coli expression systems is used to express recombinant Pfupol; however, this method is not cost-effective.
View Article and Find Full Text PDFAnal Biochem
September 2024
Research Center for Molecular Biology Eijkman, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, 16911, West Java, Indonesia. Electronic address:
A DNA polymerase from Thermus aquaticus remains the most popular among DNA polymerases. It was widely applied in various fields involving the application of polymerase chain reaction (PCR), implying the high commercial value of this enzyme. For this reason, an attempt to obtain a high yield of Taq DNA polymerase is continuously conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!