Nonribosomal chromopeptides and mixed chromopeptide-polyketides contain aromatic or heteroaromatic side groups which are important recognition elements for interaction with cellular targets such as DNA and proteins, resulting in the biological activities of these natural products. In the chromopeptide lactones and arylpeptide-siderophores from bacteria, the chromophore moiety--an aryl carboxylate amidated to the peptide chain--constitutes the formal amino terminus and is the starter residue of peptide assembly. Common to many arylpeptide systems is the activation by stand-alone adenylation domains and loading of the starter to discrete aryl carrier proteins (ArCPs) or ArCP domains which interact with the modules of the respective nonribosomal peptide synthetase (NRPS), assembling the next residues of the chain. Chain modification is another mechanism of nonribosomal chromopeptide synthesis where heteroaromatic rings such as thiazoles and oxazoles in peptides and polyketides are generated by heterocylizations of acyl- or peptidyl-cysteinyl or -serinyl/threonyl intermediates in each elongation step. In this review the basic mechanisms of chromophore acquisition in nonribosomal chromopeptide synthesis and mixed peptide/polyketide synthesis are illustrated by comparing the biosynthesis systems of various chromopeptides and chromopeptidic polyketide compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0079-6603(01)70019-0 | DOI Listing |
J Biol Chem
February 2005
Institut für Chemie, Arbeitsgruppe Biochemie und Molekularbiologie, Technische Universität Berlin, Franklinstrasse 29, D-10587 Berlin-Charlottenburg, Germany.
Quinoxaline antibiotics are chromopeptide lactones embracing the two families of triostins and quinomycins, each having characteristic sulfur-containing cross-bridges. Interest in these compounds stems from their antineoplastic activities and their specific binding to DNA via bifunctional intercalation of the twin chromophores represented by quinoxaline-2-carboxylic acid (QA). Enzymatic analysis of triostin A-producing Streptomyces triostinicus and quinomycin A-producing Streptomyces echinatus revealed four nonribosomal peptide synthetase modules for the assembly of the quinoxalinoyl tetrapeptide backbone of the quinoxaline antibiotics.
View Article and Find Full Text PDFProg Nucleic Acid Res Mol Biol
December 2001
Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Germany.
Nonribosomal chromopeptides and mixed chromopeptide-polyketides contain aromatic or heteroaromatic side groups which are important recognition elements for interaction with cellular targets such as DNA and proteins, resulting in the biological activities of these natural products. In the chromopeptide lactones and arylpeptide-siderophores from bacteria, the chromophore moiety--an aryl carboxylate amidated to the peptide chain--constitutes the formal amino terminus and is the starter residue of peptide assembly. Common to many arylpeptide systems is the activation by stand-alone adenylation domains and loading of the starter to discrete aryl carrier proteins (ArCPs) or ArCP domains which interact with the modules of the respective nonribosomal peptide synthetase (NRPS), assembling the next residues of the chain.
View Article and Find Full Text PDFJ Biol Chem
June 1992
Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Federal Republic of Germany.
Actinomycin synthetase I was purified to homogeneiety from actinomycin-producing Streptomyces chrysomallus. The purified enzyme is a single polypeptide chain of M(r) 45,000. It catalyzes the formation of the adenylate of 4-methyl-3-hydroxyanthranilic acid (4-MHA) from the free acid and ATP in an equilibrium reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!