Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.19753080709 | DOI Listing |
Org Lett
January 2025
Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
Multiple Diels-Alder reactions are a powerful method to construct large asymmetric scaffolds, but these reactions often produce numerous isomers. We now report a triple Diels-Alder reaction between a cyclic furan trimer and -substituted maleimides, achieving selective synthesis of a single asymmetric tris-adduct. The stereoselectivity of cycloaddition to π-extended furan derivatives was clarified by the experimental analysis of intermediates and theoretical calculations.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
Alkyne- and alkene-tethered acyl fluorides undergo intramolecular carbofluorination via fluoride recycling using catalytic TrBF. Excellent stereoselectivity is observed for the alkyne addition, enabling access to novel fluorinated indan-2-ones (all ≥95:5 /) and cyclopentan-2-ones (85:15 /). Fluorinated chroman-2-ones and tertiary alkyl fluorides can also be synthesized using this method, comparing favorably to previously reported protocols that employ expensive metal catalysts under harsher conditions.
View Article and Find Full Text PDFACS Cent Sci
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States.
Acrylic nitriles are a versatile class of synthetic precursors for a variety of pharmaceutically active compounds, as well as for nitrile polymers. We devised a stereoselective synthesis of ()-acrylic nitriles from the Ru-catalyzed coupling reaction of nitriles with unsaturated carbonyl compounds via C-C bond cleavage. Both carbon KIE and Hammett correlation data indicated that C-C bond cleavage is the rate-determining step for the coupling reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!