A genomic sequence analysis of the mouse and human microtubule-associated protein tau.

Mamm Genome

Geriatric Research Education Clinical Center 182-B, Veterans Affairs Puget Sound Health Care System, Seattle Division, 1660 S. Columbian Way, Seattle, Washington 98108, USA.

Published: September 2001

Microtubule associated protein tau (MAPT) encodes the microtubule associated protein tau, the primary component of neurofibrillary tangles found in Alzheimer's disease and other neurodegenerative disorders. Mutations in the coding and intronic sequences of MAPT cause autosomal dominant frontotemporal dementia (FTDP-17). MAPT is also a candidate gene for progressive supranuclear palsy and hereditary dysphagic dementia. A human PAC (201 kb) and a mouse BAC (161 kb) containing the entire MAPT and Mtapt genes, respectively, were identified and sequenced. Comparative DNA sequence analysis revealed over 100 conserved non-repeat potential cis-acting regulatory sequences in or close to MAPT. Those islands with greater than 67% nucleotide identity range in size from 20 to greater than 1700 nucleotides. Over 90 single nucleotide polymorphisms were identified in MAPT that are candidate susceptibility alleles for neurodegenerative disease. The 5' and 3' flanking genes for MAPT are the corticotrophin-releasing factor receptor (CRFR) gene and KIAA1267, a gene of unknown function expressed in brain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-001-2044-8DOI Listing

Publication Analysis

Top Keywords

protein tau
12
sequence analysis
8
microtubule associated
8
associated protein
8
mapt candidate
8
mapt
7
genomic sequence
4
analysis mouse
4
mouse human
4
human microtubule-associated
4

Similar Publications

Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class.

View Article and Find Full Text PDF

Natural products are ligands and in vitro inhibitors of Alzheimer's disease (AD) tau. Dihydromyricetin (DHM) bears chemical similarity to known natural product tau inhibitors. Despite having signature polyphenolic character, DHM is ostensibly hydrophobic owing to intermolecular hydrogen bonds that shield hydrophilic phenols.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.

View Article and Find Full Text PDF

Accuracy and clinical applicability of plasma tau 181 and 217 for Alzheimer's disease diagnosis in a memory clinic cohort.

J Neurol

January 2025

Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació de Recerca Clínic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Villaroel 170, 08036, Barcelona, Spain.

Plasma tau phosphorylated at threonine 181 (p-tau181) and 217 (p-tau217) have demonstrated high accuracy for Alzheimer's disease (AD) diagnosis, defined by CSF/PET amyloid beta (Aβ) positivity, but most studies have been performed in research cohorts, limiting their generalizability. We studied plasma p-tau217 and p-tau181 for CSF Aβ status discrimination in a cohort of consecutive patients attending an academic memory clinic in Spain (July 2019-June 2024). All patients had CSF AD biomarkers performed as part of their routine clinical assessment.

View Article and Find Full Text PDF

Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!