Estrogen alters reactivity of cerebral arteries by modifying production of endothelium-dependent vasodilators. Estrogen receptors (ER) are thought to be involved, but the responsible ER subtype is unknown. ER-alpha knockout (alphaERKO) mice were used to test whether estrogen acts via ER-alpha. Mice were ovariectomized, with or without estrogen replacement, and cerebral blood vessels were isolated 1 mo later. Estrogen increased levels of endothelial nitric oxide synthase and cyclooxygenase-1 in vessels from wild-type mice but was ineffective in alphaERKO mice. Endothelium-denuded middle cerebral artery segments from all animals constricted when pressurized. In denuded arteries from alphaERKO but not wild-type mice, estrogen treatment enhanced constriction. In endothelium-intact, pressurized arteries from wild-type estrogen-treated mice, diameters were larger compared with arteries from untreated wild-type mice. In addition, contractile responses to indomethacin were greater in arteries from wild-type estrogen-treated mice compared with arteries from untreated wild-type mice. In contrast, estrogen treatment of alphaERKO mice had no effect on diameter or indomethacin responses of endothelium-intact arteries. Thus ER-alpha regulation of endothelial nitric oxide synthase and cyclooxygenase-1 pathways appears to contribute to effects of estrogen on cerebral artery reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jappl.2001.91.5.2391 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.
View Article and Find Full Text PDFJ Neurodev Disord
January 2025
Graduate Neuroscience Program, University of California, Riverside, CA, USA.
Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!