The effect of zinc and the combined effect of zinc and lead on the Ala-D of the erythrocytes were experimentally followed in vivo and vitro. It was demonstrated that the zinc effect on the Ala-D is a function of the zinc-concentrate in blood. It was hence traced that ZnCl2 dosis up to 500 mug/ml blood raises the activity of Ala-D. Higher levels of ZnCl2 on other side leads to supression of the Ala-D activity. The experiments demonstrated further zinc exerts a dosis dependent antagonistic effect on the lead suppression of the Ala-D. Possible explanations of the effect of zinc on the Ala-D, and the antagonistic zinc effect after lead applications are still in discussion.
Download full-text PDF |
Source |
---|
J Phys Chem Lett
January 2025
Institute for Sustainable Energy/Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
The migration of Zn ions is significantly more challenging compared to that of Li ions within the same crystalline framework, leading to poor rate performance of zinc-ion batteries (ZIBs). Compared to Li, the slower migration rate of Zn is vaguely attributed to the stronger electrostatic interaction induced by Zn. Herein, the rule of how the size of the migration channel and electrostatic interaction affect Zn and Li migration in α-VO has been systematically investigated by first-principle calculations.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 69622 Villeurbanne, France. Electronic address:
Effects of past anthropogenic metal pollution on the wildlife are understudied. We investigate trace element incorporation in the dentition of a 1000 BP-year-old brown bear from the Romanian Carpathians, an area known historically for strong metallurgical activities. Background values as well as unnatural high lead (Pb), lithium (Li) and zinc (Zn) levels in a circa 5‒6-year-old brown bear male were detected using trace element maps across its functional dentition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Natural Resources Management and Development Team, Environment and Health Laboratory, Department of Biology, Faculty of Sciences, Moulay Ismaïl University, Zitoune, B.P.11201, Meknes, Morocco.
This study investigates the concentration of heavy metals lead (Pb), cadmium (Cd), and zinc (Zn) in the blood of house sparrows (Passer domesticus) across various urban habitats in Meknes, Morocco. Fifty adult sparrows were captured from five distinct sites, including industrial, high-traffic, and rural areas. Blood samples were specifically analyzed for Pb, Cd, and Zn using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFWaste Manag
January 2025
Earth Sciences Department, University of Turin 10125 Turin, Italy.
This study investigates steam washing (SW) as an innovative pretreatment for municipal solid waste incineration fly ash (MSWI-FA) dechlorination, useful for a more effective stabilization in cementitious matrix. By using a detailed analytical approach (XRPD, XRF, ICP-MS, IRMS, SEM) and geochemical modeling, great focus is dedicated on pollutant leaching reduction and changes in ash physicochemical characteristics as a function of exposure time. The research demonstrates that SW removes up to 70 % cadmium, 17 % zinc, and 10 % lead, primarily by dissolving the soluble and carbonate/hydroxide fractions and promoting the reprecipitation and adsorption of heavy metals into more stable compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!