UDPglucose: fatty acid transglucosylation and transacylation in triacylglucose biosynthesis.

Proc Natl Acad Sci U S A

Department of Plant Breeding, Cornell University, Ithaca, NY 14853-1902, USA.

Published: November 1993

Glandular trichomes of the wild tomato Lycopersicon pennellii Corr. (D'Arcy) secrete large amounts of 2,3,4-tri-O-acylglucoses possessing straight- and branched-chain fatty acids of short to medium chain length (C4-C12). Although previous biosynthetic studies suggested that glucose acylation proceeded via acyl CoA intermediates, repeated attempts to demonstrate isobutyryl-CoA-dependent glucose acylation were unsuccessful. When [14C]isobutyrate is administered to detached L. pennellii leaves, the label is readily converted to 1-O-isobutyryl-beta-D-glucose. This is immediately followed by the appearance of di- and triacylated glucose esters. L. pennellii extracts catalyzed the formation of 1-O-isobutyryl-beta-D-glucose from isobutyrate and UDPglucose, and detached L. pennellii trichomes catalyzed transfer of the isobutyryl moiety from synthetic 1-O-isobutyryl-beta-D-glucose to D-glucose. Detached L. pennellii trichomes also catalyzed the formation of diacylglucose and triacylglucose via transfer of the isobutyryl moiety from 1-O-[14C]isobutyryl-beta-D-glucose to mono- or diacylglucoses, respectively. These studies suggest a multistep mechanism in which activation of fatty acids to their respective high-energy 1-O-acyl-beta-D-glucopyranose derivatives is followed by transfer of the 1-O-acyl moiety to non-anomeric positions of other glucose and/or partially acylated glucose molecules. This appears to be the primary mechanism of activation and fatty acid esterification to glucose in L. pennellii trichomes. Cultivated tomato, L. esculentum Mill., also activates free fatty acids to their 1-O-acyl-beta-D-glucose derivatives but lacks the acyl transfer mechanism for synthesizing polyacylated sugars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC47682PMC
http://dx.doi.org/10.1073/pnas.90.21.9911DOI Listing

Publication Analysis

Top Keywords

fatty acids
12
detached pennellii
12
pennellii trichomes
12
fatty acid
8
glucose acylation
8
catalyzed formation
8
trichomes catalyzed
8
transfer isobutyryl
8
isobutyryl moiety
8
mechanism activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!