A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium. | LitMetric

Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium.

Proc Natl Acad Sci U S A

Department of Agronomy, Iowa State University, Ames, IA 50011-1010, USA.

Published: January 1992

It is well established that assimilatory nitrate reductase (ANR) activity in soil is inhibited by ammonium (NH4+). To elucidate the mechanism of this inhibition, we studied the effect of L-methionine sulfoximine (MSX), an inhibitor of NH4+ assimilation by microorganisms, on assimilatory reduction of nitrate (NO3-) in aerated soil slurries treated with NH4+. We found that NH4+ strongly inhibited ANR activity in these slurries and that MSX eliminated this inhibition. We also found that MSX induced dissimilatory reduction of NO3- to NH4+ in soil and that the NH4+ thus formed had no effect on the rate of NO-3 reduction. We concluded from these observations that the inhibition of ANR activity by NH4+ is due not to NH4+ per se but to products formed by microbial assimilation of NH4+. This conclusion was supported by a study of the effects of early products of NH4+ assimilation (L amino acids) on ANR activity in soil, because this study showed that the biologically active, L isomers of glutamine and asparagine strongly inhibited ANR activity, whereas the D isomers of these amino acids had little effect on ANR activity. Evidence that ANR activity is regulated by the glutamine formed by NH4+ assimilation was provided by studies showing that inhibitors of glutamine metabolism (azaserine, albizziin, and aminooxyacetate) inhibited ANR activity in soil treated with NO3- but did not do so in the presence of MSX.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC48256PMC
http://dx.doi.org/10.1073/pnas.89.2.453DOI Listing

Publication Analysis

Top Keywords

anr activity
32
activity soil
16
nh4+ assimilation
12
inhibited anr
12
nh4+
11
activity
9
assimilatory nitrate
8
nitrate reductase
8
microbial assimilation
8
anr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!