The human cytomegalovirus (HCMV) has evolved a set of elegant strategies to evade host immunity. The HCMV-encoded type I glycoprotein US6 inhibits peptide trafficking from the cytosol into the endoplasmic reticulum and subsequent peptide loading of major histocompatibility complex I molecules by blocking the transporter associated with antigen processing (TAP). We studied the molecular mechanism of TAP inhibition by US6 in vitro. By using purified US6 and human TAP co-reconstituted in proteoliposomes, we demonstrate that the isolated endoplasmic reticulum (ER)-luminal domain of US6 is essential and sufficient to block TAP-dependent peptide transport. Neither the overall amount of bound peptides nor the peptide affinity of TAP is affected by US6. Interestingly, US6 causes a specific arrest of the peptide-stimulated ATPase activity of TAP by preventing binding of ATP but not ADP. The affinity of the US6-TAP interaction was determined to 1 microm. The ER-luminal domain of US6 is monomeric in solution and consists of 19% alpha-helices, 25% beta-sheets, and 27% beta-turns. All eight cysteine residues are involved in forming a stabilizing network of four intramolecular disulfide bridges. Glycosylation of US6 is not required for function. These findings point to fascinating mechanistic and structural properties, by which specific binding of US6 at the ER-luminal loops of TAP signals across the membrane to the nucleotide-binding domains to prevent ATP hydrolysis of TAP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M108528200 | DOI Listing |
Appl Environ Microbiol
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
Unlabelled: Gram-negative bacteria play a pivotal role in the bioremediation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Because the outer membrane (OM) of these bacteria hinders the direct permeation of hydrophobic substances into the cells, trans-OM proteins are required for the uptake of PAHs. However, neither the characteristics of PAH transporters nor the specific transport mechanism has been well interpreted.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
Background And Objectives: Recently, the anti-herpetic activities of different plant species have been investigated. This study evaluated the effects of aqueous extract on the HSV-1 virus-infected Vero cell.
Materials And Methods: The IC of the aqueous extract was obtained by the maceration of the plant in boiling water and has been measured with the MTT method, also the q-PCR was used to study viral gene expression reduction.
Appl Environ Microbiol
December 2024
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
Survivability and tolerance of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria in harsh environments, especially under varying temperatures, are a bottleneck for the effective application of bioremediation. In this study, a temperature adaptation system (TAS) was constructed by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the PAH-degrading mesophilic bacterium s US6-1. The innovative dual-pronged TAS strategy enabled the chassis strain to effectively tackle conditions under varying temperatures, ensuring robust biological activities across a broadened temperature spectrum and exhibiting the potential to realize the high-efficiency PAH degradation of US6-1 in bioremediation.
View Article and Find Full Text PDFLuminescence
November 2024
State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environmental & Ecology, Xiamen University, Xiamen, China.
A rapid and highly sensitive first derivative synchronous fluorescence spectrometry with double scans was successfully optimized for the simultaneous determination of dissolved phenanthrene (Phe), 1-methylphenanthrene (1-MP), and 3-methylphenanthrene (3-MP) and their metabolites such as 1-hydroxy-2-naphthoic acid (1H2NA) and salicylic acid (SA) in the biodegradation processes of Phe, 1-MP, and 3-MP by Novosphingobium pentaromativorans US6-1. Δλ of 55 and 109 nm were selected for Phe, 1-MP, 3-MP, 1H2NA, and SA, respectively. The intensities of the first derivative synchronous fluorescence detected at λex of 289, 292, 291, 354, and 312 nm for Phe, 1-MP, 3-MP, 1H2NA, and SA varied linearly with the concentrations of them in the ranges of 0.
View Article and Find Full Text PDFBMC Vet Res
October 2024
College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!