Recently Kruglyak, Durrett, Schug, and Aquadro showed that microsatellite equilibrium distributions can result from a balance between polymerase slippage and point mutations. Here, we introduce an elaboration of their model that keeps track of all parts of a perfect repeat and a simplification that ignores point mutations. We develop a detailed mathematical theory for these models that exhibits properties of microsatellite distributions, such as positive skewness of allele lengths, that are consistent with data but are inconsistent with the predictions of the stepwise mutation model. We use our theoretical results to analyze the successes and failures of the genetic distances (delta(mu))(2) and D(SW) when used to date four divergences: African vs. non-African human populations, humans vs. chimpanzees, Drosophila melanogaster vs. D. simulans, and sheep vs. cattle. The influence of point mutations explains some of the problems with the last two examples, as does the fact that these genetic distances have large stochastic variance. However, we find that these two features are not enough to explain the problems of dating the human-chimpanzee split. One possible explanation of this phenomenon is that long microsatellites have a mutational bias that favors contractions over expansions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461831PMC
http://dx.doi.org/10.1093/genetics/159.2.839DOI Listing

Publication Analysis

Top Keywords

point mutations
12
stepwise mutation
8
genetic distances
8
dynamics microsatellite
4
microsatellite divergence
4
divergence stepwise
4
mutation proportional
4
proportional slippage/point
4
slippage/point mutation
4
mutation models
4

Similar Publications

Triacylglycerol (TAG) is a major component of plant-neutral lipids. Diacylglycerol acyltransferase 2 (DGAT2) plays an important role in plant oil accumulation by catalyzing the final step of the Kennedy pathway. In this study, ten DGAT2 sequences were originating from different oil crops into the TAG-deficient yeast strain H1246, to compare their enzyme activity of oil synthesis and filter out potential amino acid residue sites for directed evolution.

View Article and Find Full Text PDF

The membrane attack complex drives thrombotic microangiopathy in complement mediated atypical hemolytic uremic syndrome.

Kidney Int

January 2025

Complement Therapeutics Research Group, Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle-upon-Tyne, UK; National Renal Complement Therapeutics Centre, The Royal Victoria Infirmary, Newcastle-upon-Tyne, UK.

Introduction of complement (C) inhibition into clinical practice has revolutionized the treatment of patients with complement-mediated atypical hemolytic syndrome (aHUS). Our C3 mouse model, engineered around a gain of function point mutation in C3, is associated with complement mediated aHUS in man, allowing us to study the clinical disease in a preclinical model. Backcrossing our model onto C7 deficient and C5aR1 deficient mice enabled further determination of the roles of the C5a-C5aR1 axis and C5b-9 (the membrane attack complex) on kidney disease.

View Article and Find Full Text PDF

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Wastewater-based surveillance (WBS) allows the analysis of pathogens, chemicals or other biomarkers in wastewater to derive unbiased epidemiological information at population scale. After re-gaining attention during the SARS-CoV-2 pandemic, the field holds promise as a surveillance and early warning system by tracking emerging pathogens with pandemic potential. Expanding the current toolbox of analytical techniques for wastewater analysis, we explored the use of Hyperplex PCR (hpPCR) to analyse SARS-CoV-2 mutations in wastewater samples collected weekly in up to 22 sites across Sweden between October 2022 and December 2023.

View Article and Find Full Text PDF

Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!