Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary.

Endocrinology

Department of Endocrinology and Reproduction, Faculty of Medicine and Health Sciences, Erasmus University Rotterdam, Rotterdam, The Netherlands 3000.

Published: November 2001

Although ovarian follicle growth is under the influence of many growth factors and hormones of which FSH remains one of the most prominent regulators. Therefore, factors affecting the sensitivity of ovarian follicles to FSH are also important for follicle growth. The aim of the present study was to investigate whether anti-Müllerian hormone (AMH) has an inhibitory effect on follicle growth by decreasing the sensitivity of ovarian follicles to FSH. Furthermore, the combined action of AMH and FSH on ovarian follicle development was examined. Three different experiments were performed. Using an in vitro follicle culture system it was shown that FSH-stimulated preantral follicle growth is attenuated in the presence of AMH. This observation was confirmed by an in vivo experiment showing that in immature AMH-deficient females, more follicles start to grow under the influence of exogenous FSH than in their wild-type littermates. In a third experiment, examination of the follicle population of 4-month-old wild-type, FSH beta-, AMH-, and AMH-/FSH beta-deficient females revealed that loss of FSH expression has no impact on the number of primordial and preantral follicles, but the loss of inhibitory action of AMH on the recruitment of primordial follicles in AMH-deficient mice is increased in the absence of FSH. In conclusion, these studies show that AMH inhibits FSH-stimulated follicle growth in the mouse, suggesting that AMH is one of the factors determining the sensitivity of ovarian follicles for FSH and that AMH is a dominant regulator of early follicle growth.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.142.11.8486DOI Listing

Publication Analysis

Top Keywords

follicle growth
24
sensitivity ovarian
12
ovarian follicles
12
follicles fsh
12
fsh
10
follicle
10
anti-müllerian hormone
8
fsh follicle
8
follicle development
8
ovarian follicle
8

Similar Publications

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Ovarian tissue cryopreservation addresses critical challenges in fertility preservation for prepubertal female cancer patients, such as the lack of viable eggs and hormonal deficiencies. However, mitigating follicle and granulosa cell damage during freeze-thaw cycles remains an urgent issue. Luteinizing hormone (LH), upon binding to luteinizing hormone receptors (LHR) on granulosa cells, enhances estrogen synthesis and secretion, contributing to the growth of granulosa cells and follicles.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!