Familial adenomatous polyposis, an autosomal-dominantly inherited colorectal cancer predisposition syndrome, is caused by germ-line mutations in the adenomatous polyposis coli (APC) gene. Despite the use of different screening methods, studies worldwide fail to identify APC mutations in 20-50% of all familial adenomatous polyposis patients (APC mutation-negatives). In this study, missense mutations in the coding region of the APC gene, which would have been missed by the protein truncation test, as well as mutations in the APC promoter and the 3' untranslated region, were determined by the single nucleotide polymorphism discovery assay and direct DNA sequencing in 31 mutation-negative polyposis patients. Seventeen gene alterations were identified, whereof four (12.9%) represent possibly pathogenic germ-line mutations: silent A290T (promoter) and A8822G (3' untranslated region) as well as missense R99W and E1317Q (coding region). The 27 remaining, truly APC mutation-negative polyposis patients displayed a significantly later age at diagnosis compared with APC mutation carriers (46.1 versus 35.2 years; P < 0.01). APC mutation-negative individuals with >100 colonic polyps were more likely to present with extracolonic disease (P < 0.05) than those with <100. Assessment of microsatellite instability (MSI), a hallmark of mismatch repair deficiency, in 68 tumors from 21 truly APC mutation-negative patients, identified 4 (5.9%) unstable tubulo-villous adenomas (3 MSI-High and 1 MSI-Low), stemming from 4 (19%) unrelated individuals and likely to be caused by hMLH1 promoter hypermethylation. In conclusion, only a small proportion of APC germ-line mutation carriers is missed by the protein truncation test, and mismatch repair deficiency does not seem to substantially contribute to tumor development in APC mutation-negative polyposis patients.
Download full-text PDF |
Source |
---|
Cancer Med
February 2025
Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.
Introduction: Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication.
Methods: Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed.
Fam Cancer
January 2025
Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
Perivascular epithelioid cell tumors (PEComas) belong to a family of rare mesenchymal tumors composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. Li-Fraumeni syndrome (LFS), an autosomal dominant cancer predisposition syndrome, is caused by a germline variant of the tumor suppressor gene TP53. Here, we report the case of a 20-year-old woman with LFS who developed a PEComa of the liver.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
N Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China.
Signal transducer and activator of transcription 1 (STAT1) gene mutations have broad clinical phenotypes, classified by the inheritance pattern and functional state. Individuals with autosomal dominant STAT1 deficiency are more susceptible to intracellular bacteria, the hallmark of which is Mendelian susceptibility to mycobacterial diseases (MSMDs) that are associated with increased risks of invasive disease by weakly virulent mycobacteria. We report a novel heterozygous missense mutation in exon 23 of the STAT1 gene (NM_007315.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!