This study examines a method to rapidly rewarm the core using total liquid ventilation with warmed, oxygenated perfluorocarbon. Yucatan miniswine were splenectomized and surgically implanted with telemetry devices to transmit electrocardiographic response, arterial pressure, and core temperature. Hypothermia (core temperature = 25.9 +/- 1.3 degrees C) was induced by placing cold-water circulating blankets over the animals. Control animals (N = 7) were rewarmed using warm (37.8 degrees C), humidified oxygen. Experimental animals (N = 6) were rewarmed with oxygenated perfluorocarbon liquid (37.3 degrees C). The time to rewarm was significantly shorter in experimental animals (1.98 +/- 0.5 vs. 8.61 +/- 1.6 hours, p < 0.0001), with almost no afterdrop in the experimental group. Lactate dehydrogenase and aspartate aminotransferase were significantly increased in the control animals compared with the experimental animals. All animals that survived being chilled to 25 degrees C survived rewarming. This method may provide a means of more rapidly rewarming profoundly hypothermic victims while reducing the risks associated with current methods.
Download full-text PDF |
Source |
---|
J Nanobiotechnology
January 2025
College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
Artificial oxygen carriers have emerged as potential substitutes for red blood cells in situations of major blood loss, including accidents, surgical procedures, trauma, childbirth, stomach ulcers, hemorrhagic shock, and blood vessel ruptures which can lead to sudden reduction in blood volume. The therapeutic delivery of oxygen utilizing artificial oxygen carriers as red blood cell substitutes presents a promising avenue for treating a spectrum of disease models. Apart from that, the recent advancement of artificial oxygen carriers intended to supplant conventional blood transfusions draws significant attention due to the exigencies of warfare and the ongoing challenges posed by the COVID-19 pandemic.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.
View Article and Find Full Text PDFActa Biomater
January 2025
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China. Electronic address:
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.
View Article and Find Full Text PDFSe Pu
January 2025
School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!