Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus.

J Biol Chem

Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, 78352 Jouy en Josas cedex, France.

Published: January 2002

The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M107002200DOI Listing

Publication Analysis

Top Keywords

streptococcus thermophilus
8
components atp
8
chemically defined
8
defined medium
8
medium peptides
8
growth
7
three oligopeptide-binding
4
oligopeptide-binding proteins
4
proteins involved
4
involved oligopeptide
4

Similar Publications

is widely used as a starter culture in the production of cheese, yoghurt and various cultured dairy products, which holds considerable significance in both research and practical applications within the food industry. Throughout history, the taxonomy of has undergone several adjustments and revisions. In 1984, based on the result of DNA-DNA hybridization, was reclassified as subsp.

View Article and Find Full Text PDF

The effect of L. on yogurt: a comprehensive study of physicochemical, microbiological, sensory, and textural properties.

Front Nutr

January 2025

Department of Plant and Animal Production, Vocational College of Technical Sciences, Atatürk University, Erzurum, Türkiye.

Objectives: The objective of this study was to investigate the effects of the addition of L. (coriander) on the physicochemical, sensory, textural and microbiological properties of yogurt.

Methods: To conduct this study, 4 types of yogurt were prepared as control (C0) and with 1% (C1), 2% (C2) and 3% (C3) coriander, and the yogurts were analyzed on specific storage days.

View Article and Find Full Text PDF

The Purpose: Of the study was to assess oral microbiocenosis changes in participants of microgravity modeling in a control group and using prophylaxis in the form of a probiotic supplement with 1.0·10 CFU of strain in one lozenge and a dairy product containing not less than 1·10 CFU of s strain in one gram.

Materials And Methods: The study included 15 participants aged 25-40 years from the "Dry Immersion-2018" experiment.

View Article and Find Full Text PDF

Bacteriophage research has experienced a renaissance in recent years, owing to their therapeutic potential and versatility in biotechnology, particularly in combating antibiotic resistant-bacteria along the farm-to-fork continuum. However, certain pathogens remain underexplored as targets for phage therapy, including the zoonotic pathogen which causes infections in pigs and humans. Despite global efforts, the genome of only one infective phage has been described.

View Article and Find Full Text PDF

Bacterial levans are biopolymers composed of fructose units linked by β-2,6 glycosidic bonds that are degradable, nontoxic and flexible, representing a green technology with significant applications across various industries. Fermented soybeans are a common source of bacteria-producing polysaccharides. In this study, KKSB4, KKSB6 and KKSB7 isolated from traditionally fermented soybean (Thua-nao), along with strain 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!