Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (porin reconstituted in liposomes or MtCK) or the analyzed isoform (chicken sarcomeric MtCK or human ubiquitous MtCK, human recombinant porin, or purified bovine porin). Increased ionic strength reduced the binding of MtCK to porin, suggesting predominantly ionic interactions. By contrast, micromolar concentrations of Ca(2+) increased the amount of bound MtCK, indicating a physiological regulation of complex formation. No interaction of MtCK with reconstituted adenine nucleotide translocator was detectable in our experimental setup. The relevance of these findings for structure and function of mitochondrial contact sites is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M106524200 | DOI Listing |
Cell Signal
January 2025
Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:
Background: Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype.
Methods: An acute MI model was created using left anterior descending coronary artery ligation.
Mol Genet Metab
January 2025
Neuromuscular Diseases Unit, Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Mitochondrial and Neuromuscular Research Group '12 de Octubre', Hospital Research Institute (imas12), Madrid 28041, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Background And Objectives: Mitochondrial diseases are caused by defects in oxidative phosphorylation, with primary mitochondrial myopathies (PMM) being a subset where muscle involvement is predominant. PMM presents symptoms ranging from exercise intolerance to progressive muscle weakness, often involving ocular muscles, leading to ptosis and progressive external ophthalmoplegia (PEO). PMM can be due to variants in mitochondrial or nuclear DNA.
View Article and Find Full Text PDFMetabolites
January 2025
Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA/USP), Universidade de São Paulo, Pirassununga 13.635-900, SP, Brazil.
Background: cattle is known to be temperamental and to produce beef with greater variability in terms of quality compared to beef of . Cattle adaptability and resilience are of great importance to sustain beef production worldwide.
Objective: The study aimed to understand early post-mortem metabolites among muscles with different fiber types profile of calm and excitable Nellore, as well as its relationship with fragmentation of beef aged up to 28 d.
Biomed Pharmacother
January 2025
Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China. Electronic address:
Purpose: Targeting mitochondrial ferroptosis presents a promising strategy for mitigating myocardial ischemia-reperfusion (I/R) injury. This study aims to evaluate the efficacy of the mitochondrial-targeted ferroptosis inhibitor SS-31@Fer-1 (elamipretide@ferrostatin1) in reducing myocardial I/R injury.
Methods: SS-31@Fer-1 was synthesized and applied to H9C2 cells subjected to hypoxia/reoxygenation (H/R) to assess its protective effects.
Front Vet Sci
January 2025
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.
The motility of sperm decreases following cryopreservation, which is closely associated with mitochondrial function. However, the alterations in mitochondrial metabolism after sperm freezing in goats remain unclear. This experiment aimed to investigate the impact of ultra-low temperature freezing on goat sperm's mitochondrial energy metabolism and its potential correlation with sperm motility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!